Rodent Sticky Trap Snags a Rat and a Lizard

IMG_1443

I have heard of the use of sticky traps for studying lizards, though a colleague told me they seem to be of uncertain safety for anoles, as his recapture records were almost nonexistent.

We finally gave up on the “bio-warfare” of feline-infantry to a recent rodent invader to the house, and had to put this trap out last night inside the house. This morning we found the intruder caught in it (juvenile Rattus sp.), but the domestic service lady put it for a minute in the backyard and not long after an Anolis distichus was also caught, probably in the seek of flies stuck to the trap (see photos). She then called me and I used an old trick, pouring (vegetable) oil in the prey in order to make it come loose from the trap’s glue surface.IMG_1444

Could the oil create a thermic or clinging capability problem to the lizard? It obviously forms a coating above scales, hence I rubbed it with napkins and then placed it back to its favorite microhabitat (trunk bark) for it to bask and recover.
IMG_1445

The lizard (38 mm SVL) was toe-clipped and marked in the belly and put back in the backyard. Hopefully we can have a recapture in some days (if cats and sparrows don’t get it first).
IMG_1446

New Study on the Habitat Use of Day Geckos

Phelsuma guimbeaui from Mauritius.

Despite the brilliant colors, the natrual history of day geckos (Phelsuma) is little known. The most recent issue of Herpetological Conservation and Biology includes a very nice study on the habitat use of two Mauritian species, showing that they are most abundant in native forest and pointing out that, thanks to their pollinating services, they are keystone species. An interesting point is that even though day geckos are essentially Old World anole doppelgängers, in their habitat use they differ in rarely leaving the trunks of trees. One of the authors is legendary ornithological conservationist Carl Jones, almost single-handedly responsible for preventing the extinction of several Mauritian bird species.

Here’s the abstract:

Many fragile ecosystems across the globe are islands with high numbers of endemic species. Most tropical islands have been subject to significant landscape alteration since human colonisation, with a consequent loss of both habitat and those specialist species unable to adapt or disperse in the face of rapid change. Day geckos (genus Phelsumaare thought to be keystone species in their habitats and are, in part, responsible for pollination of several endangered endemic plant species. However, little is known about key drivers of habitat use which may have conservation implications for the genus. We assessed the habitat use of two species of Phelsuma (Phelsuma ornata and Phelsuma guimbeaui) in Mauritius. Both species showed a strong affinity with tree trunks, specific tree architecture and are both restricted to native forest. Tree hollows or cavities are also important for both species and are a rarely documented microhabitat for arboreal reptiles. Both P. ornata and P. guimbeaui avoid areas of high disturbance. Our data suggest that active conservation of Phelsuma requires not only the protection and restoration of native forest, but also implementation of forestry practices designed to ensure the presence of suitable trees.

SICB 2015: Thermal Biology and Gene Flow in Bahamian Anolis sagrei

Anolis sagrei. Photo from Wild about Spain

An important problem in climate change biology is understanding how evolutionary dynamics will influence the ability of populations or species to persist as environmental conditions change. In general, there are three ways that such evolutionary change can occur: (1) novel beneficial mutations can arise de novo; (2) rare alleles within a population can become beneficial and sweep to fixation; or (3) gene flow between locally adapted populations can introduce beneficial alleles to populations that did not previously have them. The potential for this latter scenario was investigated by Mike Logan using A. sagrei on a system of cays off of the Bahamian island Exuma. Mike measured operative thermal environments on the cays and Exuma, as well as temperature-dependent physiology of the animals in each population. He found that the islands differed in mean temperature and variability, and that optimal temperatures for physiological performance correlated with mean island temperature. Next, Mike used genetic markers to estimate population structure and rates of migration between the keys and the mainland. He found evidence for extensive gene flow between the populations, but with an interesting twist: gene flow was highest between populations that had the most similar thermal environments. Within the context of climate change, the observation of gene flow among islands based on thermal conditions suggest that as conditions change across a species’ range, beneficial alleles may be able to move into the populations where they are needed most. Mike’s work adds an important piece to an emerging picture about the interplay between standing genetic variation, local adaptation, and responses to global change.

ASH 2015: Fossil Anoles Provide Clues into Ecological Diversification

 

Emma Sherratt gives her talk on fossil anoles

Emma Sherratt gives her talk on fossil anoles

The annual meeting for the  Australian Society of Herpetology (ASH) is wrapping up here today in the lovely town of Eildon, Australia. Just because we’re a continent away from the native distribution of anoles doesn’t mean that anoles were not represented at the meeting. Yesterday afternoon Emma Sherratt, new faculty at the University of New England in Armidale, Australia, presented some of her post-doctoral work on fossil anoles preserved in amber. Emma began by saying that Caribbean anoles represent one of the oldest examples of extant adaptive radiations. Despite the age of this radiation, most of the work on the Caribbean anoles (and other adaptive radiations, for that matter), has focused primarily on living species, with historical inferences drawn from DNA analyses. She pointed out that historical insights based on analyses of extant species only should be treated with caution, unless there is corroborating information from the fossil record.

We know, she said, that islands are typically inhabited by a single lineage of ecomorphs (with subsequent diversification within ecomorphs). The fact that most ecomorph groups are represented by a single lineage on an island suggests that once an ecomorph niche is filled, it cannot be replaced, an idea known as ‘niche incumbency’. She argued that we can use fossils to assess that hypothesis – if fossil anoles pertain to same lineages of ecomorphs (e.g., the cristatellus clade of trunk-ground anoles, or the carolinensis group of trunk-crown anoles), then that would support the idea that ecomorph niches were only filled once. If extinct anoles fell into different lineages of ecomorphs, distinct from those that are extant today, then that would support the idea that ecomorphs could be replaced on islands, which would suggest that niche incumbency need not be occurring. Of course, it could also be possible for niche incumbency to have occurred if there were two lineages of the same ecomorph present on the same island, as long as the incumbent lineage drove the more recent one to extinction. But the hypotheses proposed by Emma were certainly a reasonable first pass to understand the origin of ecomorphs on the Caribbean islands.

Anoles have been fossilized in Hispaniolan amber, which we know to be about 15-20 million years old. All you folks who are anxiously awaiting the next installment of Jurassic Park be advised – this means that the famous amber used to get dinosaur DNA is far too young, as the dinosaurs (save for birds, of course) went extinct about 62 million years ago. For her study, Emma accessed an impressive 38 anole fossils preserved in amber. By far this is the largest data set of fossilized amber anoles ever examined. And, beyond their utility for understanding the process of diversification, anoles caught in amber are stunning fossils and the high resolution reconstructions that Emma makes using x-ray CT scans are equally impressive.

Emma found strong evidence that Hispaniolan fossil anoles fall into known ecomorph categories. To determine this she compared morphological details from extant species to the fossil anoles. Overall she found substantial morphological variation in the fossils, particularly in 20 of the best preserved and most complete fossils. Amazingly, Emma found that some of the fossils fell very clearly into the trunk-crown, trunk, trunk-ground, and twig ecomorph classes! She was further able to determine that the trunk-crown fossils fell into the chlorocyanus group of extant Hispaniolan lizards, and, with less confidence, evidence that the trunk-ground lizards fell into the cybotes group of extant Hispaniolan lizards. Thus, the results are suggestive that, once an ecomorph niche is filled, it prevents other lineages from evolving into it, which is consistent with niche incumbency. Obviously it is not possible to fully rule out the alternative – that species of other ecomorph lineages existed in the past – but certainly the results are a tantalizing glimpse into the processes that forged the current Caribbean fauna. In short, she found that most ecomorphs recognized today are not only present in the Miocene fauna, but also are represented by members of the same clades. Together, her results were consistent with the idea that niche incumbency occurred in the Caribbean radiation of anoles, which would indicate that interspecific interactions have regulated morphological diversity for millions of years.

A Very Orange Brown Anole

We’ve had a number of previous posts on orange-colored brown anoles, but here’s a nice blog post that discusses them a bit further, with a bonus photo of a yellowish green anole. Christina Chappell, the majordomo of serenityspell.com, reports that the lizard was seen in the northern part of the Everglades. And, no, in case you’re wondering, the photo was not altered in any way.

Australian Society of Herpetology 2015 Meeting: Follow #ASH15 on Twitter

Screen Shot 2015-01-22 at 12.01.49 PM

Greetings from Eildon, Australia, where the 2015 meeting for the Australian Society of Herpetology (ASH) is currently underway. Today is the first full day of talks and posters and I’m excited to learn what’s new and exciting in herpetology. Although the focus is predominantly on Australian amphibians and reptiles, there are several presentations on non-Australian herpetofauna, as well. Anoles are also represented as I will be giving a talk on my work on Hispaniolan anoles and Emma Sherratt will be speaking about her work on fossil anoles. If you would like to see what’s going at ASH, feel free to follow the conference on Twitter using #ASH15.

Ernest Williams Memorial Minute

The Faculty of Arts and Sciences at Harvard University has a quaint but lovely tradition of reading a “memorial minute” to honor deceased members of the faculty. I recently came across the minute concerning Ernest Williams, which was presented in 2009 and published in the Harvard Gazette.

At a Meeting of the Faculty of Arts and Sciences on May 19, 2009, the following Minute was placed upon the records.

Ernest Williams was a man of many contrasts. Biology at Harvard in the third quarter of the last century was full of outsized personalities—titans in the field with strong opinions and no reservations about expressing them. In such company, Williams appeared a wallflower, seemingly wishing to be anywhere but in the midst of their arguments. Yet, one-on-one, Williams had an incisive wit and a dry sarcasm—discussions with him were always stimulating and provocative as he never missed a chance to challenge one’s thinking, sometimes quite pointedly.

To some, Williams’s work came across as old-fashioned. His subject, systematics — the study of the evolutionary relationships of species—is among the oldest in science, and his papers — florid and opinionated and, above all, long—recalled an approach to scholarship no longer in vogue. Yet much of his work was boldly innovative; some papers are still widely cited, and in several cases his work was well ahead of its time, presaging approaches to the study of evolutionary biology that were not to catch on for several decades.

Ernest Edward Williams was born January 7, 1914, in Easton, Pennsylvania, the only child of middle-aged parents. Like many boys, particularly of that time, he grew up loving nature and spent many hours capturing salamanders and other creatures. After attending Lafayette College, Williams joined the Army, serving in Europe during World War II. Upon his return, Williams entered graduate school at Columbia University, where he was the last graduate student of the great anatomist William King Gregory.

Williams’s doctoral thesis focused on the structure of the neck vertebrae of turtles and how variation among species reflects their evolutionary heritage. The work demonstrated the combination of careful attention to detail with the ability to interpret results in the broader context that was to characterize Williams’s career. More than fifty years later the work is still foundational in understanding the evolution of turtle diversity.

In 1950, after completing his degree, Williams moved to Harvard, where he initially served as a laboratory coordinator for the anatomy course of the legendary paleontologist Alfred Sherwood Romer, then subsequently was appointed as an assistant professor and made coordinator of a General Education course on evolution. The Museum of Comparative Zoology’s Curator of Herpetology, Arthur Loveridge, retired in 1957, and Williams was appointed to take his place.  In 1970 Williams rose to the rank of professor and in 1972 became Alexander Agassiz Professor of Zoology.

Williams initially focused on continuing his work on turtle systematics, leading to a series of publications including a still-important treatise published with Loveridge in 1957. Williams soon realized, however, that the museum’s collections were inadequate for the detailed analysis he conceived, which required large samples from many populations. This recognition that the museum’s herpetological collections were wide in scope, but lacking in depth, led Williams in two directions. First, it compelled him to work greatly to expand the Herpetology Department’s holdings, ultimately leading to a quadrupling of the department’s collections (to more than 300,000 specimens) by the time he retired as curator in 1980, making the Museum of Comparative Zoology (MCZ) one of the greatest herpetological repositories in the world. Second, it led Williams’s attention to focus on lizards in the genus Anolis, a very species-rich group from the Caribbean and Central and South America. A previous curator of herpetology and director of the MCZ, Thomas Barbour, had extensively collected anoles in the Caribbean; Williams, whose focus was much more evolutionarily-oriented than most systematists of the day, recognized that this group could be a model for studying large-scale evolutionary and biogeographical phenomena.

And, indeed, they were, and still are.

New Toad Species Discovered in the Dominican Republic

Photo by Miguel Landestoy, from the New Yorker’s website

Well, actually it first came to light during a BBC expedition to film solenodons, but more recent legwork by AA  contributor Miguel Landestoy has rediscovered the animals near Pedernales in western Dominican Republic. Miguel’s efforts are chronicled in a delightful article in the New Yorker.

SICB2015: The Role of Myoblast Fusion in the Evolution of Muscle Fiber Size in Anolis lizards

DSC07656

Jake Stercula of the Johnson Lab and his 2015 SICB poster

Muscle fiber size can vary based on the frequency of use, or due to the fusion of multiple mononucleated myoblasts during development to form multinucleated fibers. To test if variation in muscle fiber size was due to frequent use or due to differences in development between species, Jacob Stercula of the Johnson lab examined the fiber size and number of nuclei for the ceratohyoid and the retractor penis magnus (RPM) of nine species of anoles. Most species exhibit a positive relationship between fiber size and the number of nuclei in both muscle types. Among species, this positive relationship between fiber size and the number of nuclei exists in the RPM muscle when accounting  for phylogeny using independent contrasts, whereas the ceratohyoid shows a positive trend, though the relationship was not significant. This suggests that for the RPM, muscle fiber size is evolutionarily conserved and is due to differences in development among species rather than differences in the amount of use. The size of the ceratohyoid muscle however, maybe be influenced by both the frequency of use and the fusion of myoblasts during development.

 

Anole Annals 2014: the Year in Blogging

2014 was a good year for AA. 220,000 viewers in 195 countries (and that doesn’t count the 200 subscribers who get each post hand delivered to their email inbox–sign up now!*), 307 new posts, 1570 page views on one day. Guess which post that was? And who do you think the most frequent commenter was, with 76 comments? WordPress has kindly provided a list of information and stats, which you’re welcome to peruse.

 

*to do so, scroll down and look for the subscribe box on the right side of the page

Page 137 of 301

Powered by WordPress & Theme by Anders Norén