Author: Jonathan Losos Page 3 of 129

Professor of Biology and Director of the Living Earth Collaborative at Washington University in Saint Louis. I've spent my entire professional career studying anoles and have discovered that the more I learn about anoles, the more I realize I don't know.

Martha Muñoz Featured in Science Magazine

From Science, September 22, 2022 

On a hot day in July, evolutionary biologist Martha Muñoz is leading four undergraduate students on a scouting expedition in the Smoky Mountains of North Carolina. As they hike up a steep trail, Muñoz turns over rocks and pokes leaf litter to assess where they might find salamanders when they return that night. She quizzes the students about how the weather might affect their chances, then demonstrates how the crunch of leaves underfoot is an easy way to assess an area’s dryness. Too much crunch means the salamanders won’t be out that night.

When one student falls behind, Muñoz hangs back to lend a hand if needed. Aha Anderson has a balance disorder and apologizes for their slowness. “No apologies needed,” Muñoz assures them. Later the crew will stop by Walmart to pick up a walking stick for Anderson. When another student, Jesús Buenrostro, proves squeamish about spiders, centipedes, and even grasshoppers, Muñoz reassures him with a few words in Spanish.

After dark, the group will return with headlamps, thermometers, and humidity sensors—and the goal of collecting 10 gray-cheeked salamanders to add to the growing salamander collection in Muñoz’s lab at Yale University. They’ll document the precise environment in which each one is found.

The southern Appalachians are a diversity hot spot for these creatures, but many of the roughly 30 species of lungless salamanders here look similar. Their environment also seems uniform, at least at first glance—creating a puzzle about how so many species could have evolved. Muñoz suspects subtle differences in behavior or habitat may have driven the salamanders to diversify, and she wants to figure out what they could be.

At 37, Muñoz has already won recognition for her discoveries about underappreciated influences on evolution, some of which buck classical thinking in the field. Her extensive studies with Caribbean lizards called anoles, for example, have provided some of the best empirical evidence that organisms can shape their evolutionary trajectory through their behavior, either speeding up or slowing down the evolution of physiological and morphological traits. She brings perspectives from multiple disciplines to evolutionary questions, says Robert Pringle, an evolutionary ecologist at Princeton University. “Her research is at the nexus of ecology, evolution, and physiology, and she has been in the vanguard of testing whether behavior acts as a drag on evolution or instead accelerates it,” Pringle says.

Muñoz sees a parallel in her own career path. The daughter of Cuban refugees, she knows firsthand the challenges people from underrepresented groups face as they try to get a toehold in academic science. “There is power in knowing that we can take control of our own circumstances, that we can guide our futures,” she says. “And there is even more power in knowing that this is a process that has unfolded for millions of years. It’s not the exception; it’s the norm.”

With that in mind, not only does Muñoz work hard to influence evolutionary thinking, she also strives to make sure others have a chance to make their own impact, no matter their background. “In my home you could often hear, ‘El éxito de uno de nosotros es el éxito de todos’—the success of any of us is a success for all of us,” she explains. “This is how I run my lab.”

MUÑOZ CREDITS her grandmothers and parents for her work ethic and success. After fleeing Cuba in the 1970s, her maternal grandmother scrubbed toilets to keep Muñoz’s mother and aunt housed and fed and later took care of Muñoz so her parents could work. The family eventually moved to a semidetached house in Queens near LaGuardia Airport, where despite regular insults from a racist neighbor, Muñoz found the diverse neighborhood exciting and inspiring. “We were all immigrants, all trying to get ahead,” Muñoz recalls. To help out, Muñoz took a job as a cashier at the local Rite Aid, where she endured threats from angry patients being refused expired prescriptions, met customers who had to choose between food and medicine, and put up with condescending doctors. “There isn’t anything about being a PI [principal investigator] that you can’t learn by being in retail,” she says.

Muñoz fell in love with nature at an early age. She and a friend scaled the chain link fence at a local park, pretending they were climbing trees in the wilderness. “I dragged every adult I could find” to the American Museum of Natural History, the Bronx Zoo, and the New York Botanical Garden, where she could connect to the natural world.

In freshman biology at Boston University, she learned about the rapid diversification of animal species during the Cambrian explosion more than 500 million years ago. It “moved me to tears,” she recalls, and inspired her to study evolutionary biology. She was accepted into a Ph.D. program at Harvard University, which had rejected her undergraduate and midcollege transfer applications. “I was so proud to be able to tell my parents I got into Harvard because then they relaxed—they knew they had done their part,” she says.

At Harvard, she worked with evolutionary biologist Jonathan Losos, whose research on Caribbean anoles has become a classic example of how evolution can follow a predictable path. For decades Losos and his students have studied lizards introduced to new islands, finding that when faced with similar challenges, these newcomers often adapt by evolving similar characteristics.

Muñoz added a twist to this story with field research on anoles in the Dominican Republic, which boasts some of the region’s highest peaks. Tropical lizards there can thrive at 3000 meters’ elevation, where it can be bitter cold. Most researchers had assumed that when a tropical lizard expands to the top of a mountain, its body would change over generations to tolerate the cold. But after comparing different species, Muñoz found little evidence of physiological differences that would confer cold tolerance. Instead, whereas sea-level anoles seek shelter from Sun in moist vegetation, the high-altitude lizards stayed warm by spending their days perched on boulders. They were “behaviorally nimble, exploiting Sun and shade to their advantage to stay optimally warm,” Muñoz explains.

The mountain lizards’ shift in behavior sped up morphological change, Muñoz found. Compared with their peers at low elevations, they had quickly evolved shorter hindlegs and flatter skulls that enabled them to hide from predators in narrow crevices in the rocks where they bask, she and her colleagues reported in 2017. The work showed a single behavior could slow one aspect of evolution, such as physiological changes in heat tolerance, and speed up another, such as the changes in anatomy she’d observed. “Far from being passive vessels at the mercy of their circumstances, organisms can influence evolution directly,” she says.

That idea wasn’t new, but prior to Muñoz few researchers had gone looking for empirical evidence. The influence of behavior on evolution “is an underemphasized problem that has not received nearly enough attention,” says Harry Greene, an emeritus evolutionary biologist at the University of Texas, Austin. With her data, “Muñoz is causing us older folks to think harder.”

After finishing her Ph.D., Muñoz did a postdoc at Duke University, where she explored another underappreciated influence on evolution: biomechanics. Duke integrative biologist Sheila Patek had been figuring out how predatory mantis shrimp evolved such fast, powerful forelimbs for crushing the shells of the snails they eat and snagging prey swimming by, and what influenced their evolutionary trajectories. These invertebrates use what’s called a four-bar linkage, in which components of the forelimb act (mechanically speaking) as four “bars” connected end to end via movable joints to form a closed loop that can resemble a parallelogram. This arrangement abounds in nature and in human-engineered devices, such as locking pliers. Many researchers had assumed each bar had a similar influence on the forces produced and would be equally likely to evolve.

But that’s not what Patek and Muñoz found. By comparing bar lengths in 36 species with known relationships on the mantis shrimp family tree, they showed the shortest bar often changed as a new species evolved. That bias most likely arose because the shortest bar has the most dramatic effect on mechanical output, amplifying force more than any of the other three when it got shorter.

Patek and Muñoz made a similar discovery in certain fish with four-bar linkages in their jaws. This arrangement enables wrasses, cichlids, and sunfish to snap open their mouths extra wide and suck in prey, and the proportions of the bars in these fish vary depending on whether their prey is fast moving or stationary. Fish that chase faster prey have shorter short bars that generate more force and enable them to snap prey faster, the researchers reported in 2018. Much like behavior, biomechanical principles can sculpt the rate, pattern, and direction of evolution, Muñoz says.

In 2020, Muñoz won the Society of Integrative and Comparative Biology’s award for achievements in biomechanics. The following year she won the society’s comparative physiology award, becoming the first researcher to win both. “She is able to integrate diverse concepts in novel and interesting ways, says Raymond Huey, an emeritus ecologist at the University of Washington, Seattle. “Most people focus on ‘A’ or ‘B,’ a few can add A plus B, but Martha can multiply them.”

IN 2019, Muñoz landed her current job at Yale, where ecology and evolutionary biology department chair Thomas Near has been working to recruit faculty from underrepresented groups and provide a welcoming environment. In his interview with Muñoz, Near acknowledged the challenges she’d face if she took the job. “He understood that I would have to battle the diversity dimension as well as the academic dimension,” she says.

These were challenges she knew well, having previously experienced the “imposter syndrome” common among scientists from underrepresented groups, who feel (however unjustly) that they don’t deserve to be where they are. She’d endured slights and insults as well, such as being told she’d have to work hard even though she was a diversity hire. The reality, Muñoz says, is that scientists from underrepresented groups feel tremendous pressure to work even harder than their peers. “We know that we have undue visibility due to our sparse numbers and correspondingly, we have a responsibility to be the best role models possible.”

At Yale, Muñoz signed up to be a resident fellow in one of the colleges, where undergraduates are housed, so she and Vigo, her German shepherd, would be embedded in the community. Seven months after arriving in New Haven, Connecticut, COVID-19 grounded her—and gave her time to write a proposal for the grant that now supports the salamander work.

The dozens of woodland-dwelling Plethodon species in the southern Appalachians posed irresistible evolutionary questions. These salamanders look so much alike, and the environment they live in seems so uniform, that researchers have considered them an example of “nonadaptive” radiation, in which organisms split into multiple species through the accumulation of random mutations and the slow march of geographic isolation, not because they have evolved different traits. Based on her work on lizards, Muñoz suspected there might be more to that story. Perhaps these salamanders have evolved behavioral or physiological differences that make each species distinctive, or perhaps their environment isn’t as uniform as it appears, creating subtle selective pressure to diversify.

Like about two-thirds of the 700 or so species of salamanders, Plethodon species lack lungs, breathing instead through their skin. Lungless salamanders have limited oxygen to fuel their activities and must make sure their skin stays moist enough to absorb as much oxygen from the air as possible. They’ve adapted by hiding and resting during the day, and by having a simplified nervous system to reduce their energy needs. As the evening cools down, they emerge from burrows, leaf litter, or rock crevices to sit, wait, and nab any insects or other prey that wander by. Most salamanders spend their lives within just a few square meters.

In the past few years Muñoz and her colleagues have collected thousands of observations of these animals, carefully recording the temperature and humidity at the exact spot where each salamander was spotted and at many other spots nearby. Already, they have documented diverse “microhabitats” in their study area—at the base of trees, under rhododendron leaves, on rocky ledges, and elsewhere—each with a specific range of temperature and humidity.

In a 2020 study of 26 species led by her postdoc Vincent Farallo, now at the University of Scranton, Muñoz and colleagues found that each prefers a slightly different combination of temperature and humidity. By choosing certain spots, each species is hydro- and thermoregulating, Muñoz says. Overall, the species mostly fall into two groups. One chooses warm, wet surroundings, where the moisture helps their skin absorb oxygen. “If their environment is wet, then they can capitalize on warmer temperatures,” which allows them to be more active, Muñoz explains. A second group can tolerate drier environments—but must opt for shade or other cooler places to keep from dying out.

Muñoz hosts hundreds of salamanders from dozens of species in her lab, where she and colleagues are measuring metabolic rates, water loss rates, preferred temperatures, heat tolerance, cold tolerance, and other traits. They hope to learn whether the animals’ preferences for specific spots, combined with physiological adaptations, may be contributing to the formation of new species.

So far they’ve found that resistance to water loss varies considerably among species, suggesting this physiological trait is evolving rapidly. Species that are less tolerant of water loss prefer wetter environments in the wild, whereas species that are more resistant to desiccation can use drier environments. If salamanders have chosen different microhabitats to suit their different moisture requirements, some populations could be becoming isolated from others, potentially setting the stage for them to become a new species.

AFTER WORKING IN THE LAB all summer, Muñoz’s students are eager to see the salamanders in their native habitat. The first night out is challenging, as the species they’re seeking proves elusive. But by the second night the students know the routine better, and they’ve set their sights on a different species that proves to be more plentiful. Anderson, with the aid of the new walking stick, catches a few to help the group meet its goal. And Buenrostro, who as a youth worked alongside his mom packing fruit, shows no fear as he digs into the dirt. They finish up before midnight, far earlier than expected. “You guys are awesome,” Muñoz says. “In one day, you figured it all out.”

Such encouragement is quintessential Muñoz, says Jessica Coutee, one of the students on the trip. Coutee, an Army veteran, admits she wasn’t sure what to make of Muñoz when they first met. Muñoz was wearing an elegant red dress as she led a group of veterans on a tour of Yale’s natural history museum. But she didn’t hesitate to don a pair of long yellow gloves and plunge her hands into a tub of chemicals to pull out a preserved giant iguana to show the group. “When you look at her, you might think she’s a girly girl, but she’s not,” Coutee says. Coutee, who calls herself Louisiana Creole as she’s a mix of Black, French, and Native American, is part of the first generation in her family to go to college. She, too, has wrestled with imposter syndrome, but not in Muñoz’s lab. “I feel I belong,” she says. “It’s an unbelievable feeling that I just don’t want to let go of.”

Providing a nurturing community for students of all backgrounds is Muñoz’s goal. “The first step into science is the hardest, so I try to make it as easy as possible,” she explains. Meanwhile, she’s still trying to figure some things out for herself. She is thinking about starting a family, but she has yet to receive tenure and still feels pressure to be perfect. “It feels as if I’m barely above water.”

Those closest to Muñoz say she works too hard, and she doesn’t deny it. But she says her work keeps her optimistic. “What nature is teaching us is that—like the lizards and salamanders I study—we are not passive vessels at the whim and mercy of our environments,” she says. “While we cannot extract ourselves from existing in a certain environmental context, I see hope and possibility in our future.”

Pitcher Plant Devours Adult Green Anole

From the Facebook page of the Wildlife Resources Division of the Georgia DNR.

Festive Anoles in Tucson!

50 Years of Anole Research on Barro Colorado island

Eminent anole researcher Robin Andrews was recognized by the Herpetologists’ League with the 2021 Distinguished Herpetologist Award for her contributions to advancing scientific and public understanding of herpetology through research, teaching, and service. Her essay in Herpetologica chronicles the incredible, 50-year-long research program she, Stan Rand and others have conducted on Anolis apletothallus on Barro Colorado Island in Panama.

Here’s the Abstract:

I present the results of 50 yr (1971–2020) of annual censuses of Anolis apletophallus on Barro Colorado Island, Panama. The main objectives were to assess why abundance in end-of-the-year censuses varied substantially from year to year and why it declined over time. Abundance was negatively correlated with annual rainfall, 90% of which occurs in the wet season when eggs are laid. Lizard abundance is indirectly linked to rainfall through the interaction between Anolis eggs and their major predator, Solenopsis ants. More eggs are killed by ants when rainfall is relatively high because ants are more active and encounter more eggs than when rainfall is relatively low. While rainfall accounts for variability in abundance, it has not changed over time and thus may not account for the overall decline in abundance. Model selection of AICc analyses identified two other factors correlated with abundance. Abundance was positively correlated with the Southern Oscillation Index (SOI) lagged by 1 yr. High SOI (and high abundance) is associated with cool and wet La Niña conditions and low values with dry and warm El Niño conditions. The prediction that low abundance is associated with dry and warm El Niño conditions (low SOI) conflicts with the negative correlation between abundance and rainfall where low abundance is associated with high rainfall. Moreover, abundance was negatively correlated with Tmin (minimum annual temperature). The mechanism by which increasing Tmin during the census period is linked to declining abundance is unknown. Three climatic factors are correlated with lizard abundance, but none of them explain why abundance has declined. A third objective was to examine the relationship between species richness and species dominance of Anolis communities with respect to rainfall patterns. Tropical forests typically have a maximal richness of 7–8 species. Our study sites in Panama have high species richness, but Anolis apletophallus individuals made up 96% of all records, an unexpected level of species dominance. Comparisons among sites suggest that the number of Anolis species in a community is related to annual rainfall, and dominance is related to seasonality of rainfall. Dry forests have few Anolis species and wet forests have as many as 7–8 species. Forests with short wet seasons (months with .100 mm rainfall) have a high likelihood that individuals of one species will dominate the community.

 

As the abstract reveals, the paper summarizes an extraordinary amount of fascinating research. But there are also some great stories. This is my favorite:

My trip to Panama to conduct the Christmas lizard count with Stan was normally a very special and much anticipated annual treat. One such year, however, was far different from the treat I had anticipated. I had taken my Boston Whaler, on what was to have been a quick trip to our remote AVA site to replace fallen flagging tape that marked transects. This was a boat trip of some 9 km from the BCI boat dock on the canal (northeastern) side of the island to the AVA boat tie up on the back (southwestern) side of the island. My mission accomplished, I left AVA midafternoon and was close to the half-way point when the motor of the Boston Whaler quit. Not only was I alone on the back side of BCI, but the strong dry season wind was pushing the boat away from BCI. To stop the boat from drifting farther, I used its single oar to steer it to the nearest channel marker where I tied up. I had faint hopes of rescue because boat traffic was infrequent; the most likely scenario was that I would sit in the boat until nightfall when the wind would die down and I could start to paddle. This is exactly what happened. Progress around BCI was very slow because I had to sit on the prow of the Whaler and pull the boat forward with the oar while alternating strokes from one side of the boat to the other to maintain a somewhat straight course. It was thus quite dark when I saw the first of many waves of large, low-flying aircraft pass overhead. I heard the steady drone of the air traffic and felt extremely isolated in my small boat in the dark. I did not know until the next day that, in the early hours of 20 December, I witnessed the beginning of the 1989 US invasion of Panama!

It was well after midnight when, to my great relief, I was intercepted by BCI guards on their regular island patrol just as I saw the buoy lights of the canal; the guards towed me the last several kilometers of what had been a physically and mentally challenging journey. The next day BCI was deemed unsafe and all scientists, guards, cooks (and their food supplies), etc. were ordered to leave the island by the Smithsonian. For the first time in its history as a nature reserve, the island’s biota was left to its own devices. All the island boats were commandeered to take the residents of BCI to Gamboa (Fig. 3), one of the initial targets for US military action. When we were allowed outside, we visited the remains of a Panama Defense Forces building and saw what automatic rifle fire could do to the simple wooden walls and floors of standard issue Panama Canal Company buildings. That memory became especially vivid on that evening when our group was taking shelter in the concrete stairwell of just such a building because of nearby sniper fire. Panama City and rural areas were so chaotic that the Panamanian evacuees could not go home to their families, not even to know, in some cases, if they were safe. Despite these challenges, the cooks continued to produce great meals for us, including a turkey dinner on Christmas Day. At the end ofDecember, we were allowed to return to BCI. The Anolis team completed the scheduled censusing of four sites, but what remained of my vacation time was too short to conduct planned experimental studies. I was on the first commercial flight to the United States after the invasion, and, for the very first time, I was happy to leave Panama.

New Species of Small Green Anole Discovered in Cuba

Read all about it in Caribbean Herpetology, freely available online. Here’s the Abstract:

Green anoles of the Anolis carolinensis group are divided into the carolinensis and isolepis subgroups according to a consensus of molecular phylogenies. Species in the Anolis isolepis subgroup (A. altitudinalis, A. isolepis, A. oporinus, and A. toldo) are endemic to Cuba and the highest diversity is concentrated in forested areas of eastern Cuba. Here, we describe a new species of this subgroup from western Cuba based on genetic and morphological differences from other species. Our phylogenetic analysis, based on DNA sequences, includes all of the known species and suggests that the new species is more closely related to A. altitudinalis, A. oporinus, and A. toldo than to the widespread A. isolepis. In addition, we provide a new hypothesis on the taxonomic status of A. incredulus and recommend that it no longer be considered as a species in the A. carolinensis group. Due to the lack of a diagnosis, and poor condition, of the only available specimen, we consider A. incredulus as a species inquirenda. New morphological and genetic data of recently collected specimens of A. oporinus and A. toldo will provide complementary information about these species known from one or a few specimens.

And here are some similar Cuban species:

Important New Update on the Miami Lizard Situation

This important herpetological updated appeared in the Miami Herald today.

Dave Barry: Fellow Floridians, beware of toilet lizards and rising iguana aggression

BY DAVE BARRY UPDATED JULY 15, 2022 2:47 PM

We need to talk about the lizards. I think they’re up to something.

Here in South Florida we’re accustomed to lizards, of course; they’re everywhere. When I moved here decades ago, the lizards were one of the things I had to adjust to, along with the hurricanes, the 250 percent humidity, and the fact that Miami drivers actually speed up for stop signs.

But the lizards didn’t bother me, because even though there were a lot of them, they were small and cute and non-threatening. They seemed to spend most of their time just standing around doing nothing, like members of a miniature highway-repair crew.

The most aggressive lizard behavior I’d see was the occasional male lizard trying to attract a sex partner by displaying the skin flap under his chin, which is called a “dewlap.” Apparently it is a strongly held belief among male lizards that the chicks really go for a guy with a big dewlap. It’s kind of like weight-lifter human males who believe human females are attracted to large biceps and consequently wear tank tops everywhere, including funerals.

But I was not threatened — nor, for the record, attracted — by the dewlap displays. I left the lizards alone, and the lizards left me alone. If I encountered lizards, say, on a sidewalk, they always respectfully skittered out of the way, in recognition of the fact that I was, compared to them, Godzilla.

But lately the lizards are different.

I don’t know what’s causing it. Maybe it’s global climate change. Maybe there was a leak from some kind of top-secret Chinese lizard laboratory. Whatever the cause, there seem to be a lot more lizards around than usual. But what’s really disturbing is that many of these appear to be a new kind of lizard: They’re bigger, and they’re uglier. They’re not the cute li’l Geico Gecko types. They’re more along the lines of junior-varsity velociraptors.

And they have an attitude. More and more, when I encounter sidewalk lizards, they do not skitter away. At best they casually saunter off in an insolent manner. I suspect they may also be vaping.

Is this iguana contemplating occupying your toilet? Dave Barry fears so based upon recent events.

Sometimes these lizards don’t move at all: They just stand there defiantly, giving me that beady lizard eyeball, clearly conveying, by their body language, the message: “Why should I fear YOU? You have a small dewlap!”

Which, much as it pains me to admit it, is true.

Perhaps you think I’m overreacting. Perhaps you’re thinking, “OK, maybe the lizards are getting bigger and more aggressive. But why should I care? I spend most of my time indoors anyway, so this issue doesn’t really affect ME.” Oh really? Let me ask you a question: While you’re indoors, do you ever have occasion to use a toilet? I ask because of an alarming report I saw July 8 on NBC6 TV news. The report begins with a camera shot looking down into a toilet bowl, which contains a large iguana. As we’re seeing this, news anchors Jawan Strader and Jackie Nespral have the following exchange:

STRADER: Imagine walking into your bathroom at home and seeing this! An iguana in the toilet!

NESPRAL: OK, I don’t want to imagine that.

This exchange introduces a report concerning retirees Janet and Bruce Bleier, who, since moving to Hollywood from Long Island, have encountered not one, but TWO commode iguanas

The first time was in October, when Bruce went to use the bathroom late one night.

“I yelled to my wife, ‘There’s an alligator in the toilet!’ ” he recalls.

Janet discovered the second iguana. She offers this advice to NBC6 viewers: “Look before you sit.”

In both cases, the Bleiers called Harold Rondan, proprietor of a company called Iguana Lifestyles, who came and took the iguana away. (Iguana removal is a major industry in South Florida.)

Perhaps at this point you’re thinking, “OK, so this one couple had two iguanas show up in their toilet. It’s probably just a fluke. It’s not like it’s an epidemic.”

Oh really? Well perhaps you would be interested to know that on July 10, just two days after the NBC6 report about the Bleiers, another local station, WSVN 7News, carried a report about another Hollywood resident, Michelle Reynolds, who came downstairs one evening and looked into her toilet. Guess what she found?

That’s right: Rudy Giuliani.

No, that would be pretty great, but that’s not what happened. She found an iguana. A LARGE iguana.

“He took up most of the toilet bowl,” she tells 7News. There’s video of the iguana being removed, again by Harold Rondan of Iguana Lifestyles, who identifies it as a Mexican spiny-tailed iguana. Even by iguana standards, this is an ugly animal, and it does not look happy. You can tell by its facial expression that its goal in life is to grow much bigger so that one day it can come back and eat Harold Rondan of Iguana Lifestyles.

A large mature male iguana basks in the sun impressing a female with his dewlap at the Miami Beach Golf Club. Dave Barry warns South Florida that the lizards have become more brazen. Jose A. Iglesias jiglesias@elnuevoherald.com

And that’s not the end of our story. On July 11, one day later, the Bleiers were once again on the local TV news. It turns out they had yet another toilet iguana. This was their THIRD.

So please don’t try to tell me this isn’t an epidemic.

I spoke by phone with Janet Bleier, who said she and her husband are trying, with the help of Hollywood authorities, to figure out how the iguanas are getting in, but so far they’ve had no luck.

I asked her if they ever encountered toilet iguanas when they lived in Long Island.

“Nope, nope, nope,” she said, adding, “nope.”

I asked her if they had considered moving back to Long Island, and she said they had not, but she added this: “We never, ever, walk into one of our bathrooms any more without checking. Even if we’re not going to use the toilet, we look.”

In case you think this epidemic is confined to Hollywood, I urge you to Google “toilet lizards.” You’ll discover that this has been going on for a while now, and not just in Florida; it’s happening in warmer climates all over the world.

So I repeat: The lizards are up to something. But what? Are they planning some kind of coordinated attack? Are we going to find ourselves in a real-life version of the classic Alfred Hitchcock thriller movie “The Birds,” in which suddenly, out of nowhere, a peaceful California village is terrorized by a huge, mysterious flock of violent toilet iguanas?

An iguana ended up in a toilet of a Coconut Grove home last year. There has been a recent spree this year of toilet lizards as well. Camila Hire

I don’t have the answers. As a journalist, all I can do is raise questions, in hopes of getting internet clicks and creating widespread panic. It’s up to the authorities to take whatever steps are necessary to end this crisis, even if that ultimately means relocating the entire population of South Florida to Long Island.

But for now we all need to do our part. This means keeping our toilet lids down, of course, but it also means standing up to the lizards and letting them know we’re not afraid of them, even though we actually are. The next time you encounter a lizard, either on the sidewalk or, God forbid, in your bathroom, look it straight in whichever eyeball is closest to you and tell it, in a firm, clear voice: “We know what you’re up to.“ If it’s a Mexican spiny-tailed iguana, you should say this in Spanish.

Also, if you have a dewlap, you should display it. They respect that.

Read more at: https://www.miamiherald.com/living/liv-columns-blogs/dave-barry/article263508388.html#storylink=cpy

Green Anole Attracted by Violin Playing?

Green anole at the window. Listening to violin?

Dr. Phillip Smith of Georgia wrote to Anole Annals:

“For the past several days one of my anole friends has appeared at my back door windows at about 12:30 PM.  I have studied and played violin as a pastime since about 1947, and play a bit every day. I had happened to choose that time on the first day and after a few minutes my attention was drawn to this little guy poking his nose farther and farther in a jabbing way into the window as he “moon-walked” along the side of each pane.  He had glided down to the bottom of the door window when I really began to watch, and it was so in synch with the music that I kept playing for a bit.  

He kept up his activity, sometimes appearing almost completely, always making a rocking, jabbing movement with his body, gradually moving to his right and the other side of the window.  When he got there he really took off upward with his head always extending onto the glass and “slid” to nearly the top of the door, then gradually worked back down.  By then I had been watching for several minutes, and realized this was no accident (or at least so I projected).  

I got my iPhone and began to try to capture his activity.  Of course this meant the music stopped, and the activity diminished pretty quickly.  When this became obvious I hustled back to my violin and began to play.  Within a very short time he was back at it, and he stayed for at least a half hour.

The door opens on a small slab, about ten feet square as is common in condos, with grass around its two sides and a shed along the left side.  I have quite a few large potted plants including a nine-foot yellow pine and a climbing rose on my back fence, many of which have been there for years.  The eave overhangs the back wall and door until about 1:30 at this time of year, so is shaded when he comes, and he has come for several days in a row, always with similar interaction.  I don’t even know how or what anoles (If he is indeed one) hear and was a little surprised he could hear through the glass, but then it occurred to me he might be sensing the vibration through his feet.  

I am a retired physician and very interested in this phenomenon, and experienced enough in scientific literature to know it would take me “forever” to ferret out information truly relevant to this interaction and my little friend, which is why I thought to contact you in this way.”

Dr. Smith then provided two videos, which he describes (see videos at bottom):

“The “screen” for the interaction is a French door with five apparent panes of glass, facing due west with a shading, overhanging eave above it, which becomes sun-exposed at about 2:20 PM.  The videos and photos were all taken in the period after 11 AM, when the anole appeared only once—all other “visits” were between 12:50 and 1:30.  

Sadly the reason the anole attracted my attention on the first interaction was that he/she moved very actively around the lower 1/3 of the door glass frequently making jabbing, bobbing up and down movements along the bottom and once “moon-walking” almost all the way up the left side and back down.  These movements were almost continuous for more than 30 minutes, and did not suggest hunting.  But because I could not photograph this and play the music at the same time, and I had not previously used the “selfie stick” I had, the later videos don’t show much of this.  

There are periods of activity and some fairly long periods of simply “freezing” in place, sometimes off the edge of the glass out of view.  

In the longer video I couldn’t get both the very top and bottom of the glass in the frame where I could anchor the camera stand, and the anole really doesn’t appear until just after 5 minutes.  From the start his primary attention seems to be the insect life on the outside of the door.  He moves up and down the right side of the glass often looking toward the middle of the door and from time to time scratching his head with his back foot (I think usually his left) as @ 16 minutes 59 seconds.  

There is a fairly active section from 23:30 to the end of this video, especially a dart downward to nail a bug @ 27:09.

The overall impression of the 11 and a half minute video is similar. The anole is present from the beginning with movements up and down from one pane to another, and his intent seems to be to get something to eat.  

I don’t think there is a particularly convincing relation of his movements to the music in either of these.”

 

How Many Anoles Are There in Captivity (Pets, Zoos, Labs) Worldwide?

Photo from http://www.petworldshop.com/

Nigel Rothfels, a historian of animals and culture at the University of Wisconsin-Milwaukee, asks:

Given the previous AA post on anoles in the pet trade, the amount of in-country breeding there must be of anoles, the general life-span of anoles, and the general growth in pet-keeping since Covid, what is your highly educated guess on the number of anoles currently being kept in captivity world-wide (as pets, for educational supply companies, in labs, or zoos).  With 350,000/year being collected in just Louisiana in 2006, it makes me think that something like 3-5 million might still be an underestimate.

 

Anyone want to venture an estimate?

The New Yorker Features an Anole Cartoon

Bob Trivers’ Early Years

Bob Trivers published his memoirs, Wild Life, six years ago. We discussed it in these pages and pointed to a favorable book review that appeared in Current Biology, a review with which I agree completely, not surpisingly, since I wrote it.

I commend the book to you, but if you want the short story, check out Trivers’ two-page summary of his life from age 13 to 29 just published in Evolutionary Psychology. The abstract is a good indication of what the short paper holds: “This is a brief history of my intellectual life from age 13 to 29 years—and beyond. It encompasses mathematics, US history, and evolutionary biology, especially social theory based on natural selection.”

Page 3 of 129

Powered by WordPress & Theme by Anders Norén