Anole Exhibit at the American Museum of Natural Exhibit Also Talks about Cuba More Generally: New York Times Review

anolead_amnh_cuba

The American Museum of Natural History just opened an exhibit on anoles that also presents information on the natural history and culture of Cuba. Or maybe it’s the other way around. But either way, you have to love their logo. The New York Times just reviewed the exhibit, and not surprisingly, anoles were a centerpiece of the article.

screen-shot-2016-12-01-at-8-22-36-am

And here’s some text from the article:

screen-shot-2016-12-01-at-8-23-12-am

Lizard UV Vision and Signalling: Commercial Possibilities

advertisment

From the recent ISBE Newsletter (28:2, p.26).

The artist, Ken Otter, who when not drawing is a professor at the University of Northern British Columbia, explains the back-story:

My first love was reptiles – birds came as a later incarnation (although I console myself that they are simply feathered reptiles).  I was actually planning on shifting to working on anoles during my postdoc.  I have had numerous ones as pets over the years – my students gave me a brown anole that became our lab mascot for about 5 years.  I even had an undergrad student at the University of Nottingham that I was co-supervising with Pete McGregor run trials to see if males eavesdrop on dewlap displays of other males. Unfortunately, the student was primarily focused on nature photography, and we had a miscommunication on scientific design.  I found out after the fact that he hadn’t quite followed protocol, so we couldn’t count all our trials, so the results were only ever presented in a conference poster and not published.  He ended up as a photographer for BBC Wildlife though!

I had actually been awarded a short-term postdoc back in the 90s from the Association for the Study of Animal Behaviour to test anole signalling behaviour using video playback systems (very similar to the stuff that has since been done using Robo-lizards).  Unfortunately, it came at the same time as I was offered a tenure track job here, and the University had a ‘northern research focus’ so wasn’t too keen on me heading off to the Caribbean to do field work.  Guess now that I have full professorship I could always tell them to stuff themselves, but I have my research program set up now!  Still find dewlap displaying fascinating, especially with the added component of UV signalling in the mix.  That aspect parallels a lot of the stuff with bird signalling.  The fact that males are in such close proximity and can see at least silhouettes of others displaying give a certain network component that Pete and I were always interested in pursuing, but just never go around to it.  Still occupies my thoughts (hence the cartoons) and talk about it in my lectures, but guess I will have to wait to put it into field practice!  Still, next North American Ornithological Congress in 2020 is being held in Puerto Rico….

And here’s another of his drawings:

ken-otter-drawing

Blogging for SICB 2017: Anole Annals Wants YOU!

Society for Integrative and Comparative Biology logo.

Society for Integrative and Comparative Biology.

It’s late November, which means a few things: Winter is coming, Westworld is wrapping up, people are going to lose their minds on Black Friday, and, most importantly, the annual meeting for the Society for Integrative and Comparative Biology (SICB) is upon us. SICB is one the biggest annual meetings for biologists in the United States, and it is a venue where Anolis research is prominently featured. This year’s meeting, which will be held in New Orleans during the first week of January, is no exception. By my count there are 35 talks and posters featuring anoles. I’ve been attending this meeting regularly for nearly a decade and I’m fairly certain this is a new record. I think that this particularly high turnout really speaks to the increasing prominence of anoles as model organisms for ecological and evolutionary studies.

With great prominence, however, comes great responsibility. We like to cover every presentation, whenever possible and also focus on giving spotlights to undergraduates and graduate students as much as possible. Every year we rely on many conference participants to blog about posters and talks. If you’re an undergraduate or graduate student, blogging is a great way to practice writing to a broader audience. Moreover, if you blog for AA and are presenting at SICB, we guarantee that we will cover your presentation. Bloggers at all levels of experience are welcome to blog – undergrads, graduate students, postdocs, and faculty! Please email me at mmm109@duke.edu or leave a comment for this post if you’re interested in blogging for AA at SICB and we’ll get you started. I will provide detailed information on how to blog and will also be at the conference (and blogging for AA) and can provide assistance. See this post from SICB 2016 for an example. Thanks very much!

Newly Described Dominican Anole Species Enshrined on Stamps

dr-stamps

Earlier this year, we reported that researchers had split the four species of green anoles on Hispaniolia, describing 12 new species. Wasting no time–and with much beauty–the Dominican Republic has placed four of these new species on stamps! Thanks to the world’s authority on anoles on stamps, Uwe Bartelt, for bringing this to our attention.

ID Help with Anoles From Costa Rica

Hi all,

My students and I spent a few weeks in the southwestern portion of the Osa Peninsula of Costa Rica this past summer, mostly working on frog projects. However, it is hard not to get interested in the anoles too! We found several individuals in our stay that we could not readily key out in Savage (2002). They were found in in secondary rain forests along small streams. Sorry, no dewlap photos. Any help from the experts on the identity of these beasts would be appreciated!

Unknown anole, lateral view caiman-afternoon-2 caiman-afternoon-3

Here’s another individual from the same study site that is perhaps the same species:

unknown anole 2caiman-skull-morning-3

Tails of the City: Caudal Autotomy of Anolis cristatellus in Urban and Natural Environments

Lead author, Kirsten Tyler, reports on her recent Journal of Herpetology paper with K. Winchell and L. Revell:

Urbanization creates drastic changes to habitats leading to differences in microclimate, perch characteristics and distribution, and ecological communities (competitors, prey, and predators) when compared to natural (forest) habitats. Studies have found increased rates of mortality of many urban species due to generalist urban-tolerant predators such as raccoons, feral cats, and domestic animals (Ditchkoff 2006). Anolis lizards are able to voluntarily drop their tails (“autotomize”) when challenged by a predator, enabling their escape in many instances. The maimed lizards are able to regenerate their lost tails, though the replacement tail is a rod of cartilage and not the original bony vertebrae. The regenerated tail portions are often a different color and texture, and the lack of vertebrae / cartilage rod are clearly visible in X-rays.

We hypothesized that autotomy rates would be more similar between urban areas in different municipalities than to natural areas in the same municipality due to similar predator regimes in urban sites across the island. We compared the frequency and pattern (number of caudal vertebrae remaining) of caudal autotomy of A. cristatellus between urban and natural areas in Puerto Rico.

X-rays of our samples with an intact tail (A) and an autotomized tail (B).

X-rays of our samples with an intact tail (A) and an autotomized tail (B).

We sampled A. cristatellus from paired natural and urban sites in four Puerto Rican municipalities: San Juan, Mayagüez, Ponce, and Arecibo. The natural sites were high quality natural forests and the urban sites were high-density residential areas. Urban sites were dominated by asphalt and other impervious surfaces, had sparse tree cover, and a large fraction of potential perches were manmade surfaces such as walls and fences. We scored 967 X-rays from these eight sites for caudal autotomy and counted the number of remaining tail vertebrae. We tested for an effect of urbanization on caudal autotomy by fitting a logistic regression model with municipality (San Juan, Mayagüez, Ponce, Arecibo) and site type (urban, natural), and their interactions, as model factors, and body size as a covariate.

Our data shows that lizards found in urban sites have a larger probability of having autotomized tails.

Our data shows that lizards found in urban sites have a larger probability of having autotomized tails.

Interestingly, we found higher rates of autotomy in all urban populations compared to nearby natural areas. Differences in autotomy might be explained by differences in predator density and efficiency (Bateman 2011). For example, inefficient predators (those that more often than not fail to capture their prey) tend to leave behind more lizards with broken and regenerated tails (Schoener 1979). In addition, a greater abundance of predators could result in more predation attempts. Unfortunately, we did not collect data on predator abundances or community composition, so we cannot distinguish between these (non-mutually exclusive) explanations. Higher rates of autotomy in urban areas could thus reflect any of a variety of factors, including (but not restricted to) inefficient predators in urban areas, a shortage of refuges offering protection from predators, or an increase in predator density.

For lizards with autotomized tails, we found no significant difference in caudal vertebrae number between urban and natural sites.

For lizards with autotomized tails, we found no significant difference in caudal vertebrae number between urban and natural sites.

Lastly, we did not find that lizards with autotomized tails in urban areas had lost more (or less) of their original tail to caudal autotomy. Since regenerated tails cannot be autotomized past the original break point (i.e. cartilage cannot autotomize), this suggests that lizards in urban areas are no more likely to be subject to multiple unsuccessful predation attempts (resulting in caudal autotomy) than lizards in natural forest. Future investigation quantifying predation attempts or predator community composition in urban and forest habitats could help us better understand the source of this intriguing pattern.

 

Read the paper:

R. Kirsten TylerKristin M. Winchell, and Liam J. Revell (2016) Tails of the City: Caudal Autotomy in the Tropical Lizard, Anolis cristatellus, in Urban and Natural Areas of Puerto Rico. Journal of Herpetology: September 2016, Vol. 50, No. 3, pp. 435-441.

 

References:

BATEMAN, P. W., AND P. A. FLEMING. 2011. Frequency of tail loss reflects variation in predation levels, predator efficiency, and the behaviour of three populations of brown anoles. Biological Journal of the Linnean Society 103:648–656.

DITCHKOFF, S. T. 2006. Animal behavior in urban ecosystems: modifica- tions due to human-induced stress. Urban Ecosystems 9:5–12.

SCHOENER, T. W. 1979. Inferring the properties of predation and other injury-producing agents from injury frequencies. Ecology 60:1110–1115.

Anole Photo Contest 2016 – Time to Vote!

Thank you to everyone who submitted photos for the Anole Annals 2016 calendar contest, we received so many great submissions! We’ve narrowed it down to the top 30, and now it’s time to vote! Choose your 5 favorites in the poll below. You can click on the thumbnail to view full-size images. You have 5 days to vote – poll closes on Monday at midnight (11/21).

Western North Carolina Green Anoles

Anolis carolinensis basking mid-winter in the Great Smoky Mountains National Park. Note the icicle in the left foreground. Photo by Sandy Echternacht from The Reptiles of Tennessee (UT Press 2013), and used with permission of the photographer and publisher.

Anolis carolinensis basking mid-winter in the Great Smoky Mountains National Park. Note the icicle in the left foreground. Photo by Sandy Echternacht from The Reptiles of Tennessee (UT Press 2013), and used with permission of the photographer and publisher.

Having recently moved to North Carolina, I am naturally inclined to get out and look for anoles. The state encompasses portions of the northern extent of the green anole (Anolis carolinensis) along the eastern seaboard, and a number of researchers are interested in both the evolutionary history of green anoles (Tollis et al. 2012, Campbell-Staton et al. 2012, Tollis and Boissinot 2014; Manthey et al. 2016) as well as, in particular, their ability to adapt to highly season regions (Jaffe et al. 2016). For a subtropical lizard to survive in areas that regularly see snow and ice is potentially an important study in regional adaptation. Indeed, this dramatic photograph below illustrates that anoles and icicles can coexist in both space and time.

This comes from work done by Sandy Echternacht and David Bishop at the University of Tennessee Knoxville. These researchers have shown that the green anoles in the Great Smoky Mountains National Park (yes, they occur there!) exist mostly on south-facing rocky slopes, and that they do not hibernate during the colder months. Instead, they will often bask on the rock faces when the sun shines directly on the rock (even when ambient temperatures are near freezing). During warmer months, the lizards move from overwintering sites into the forest, often along rivers (Bishop and Echternacht 2003, 2004). South of the Park, this species can be found in abundance along the banks of larger rivers.

North Carolina GAP Analysis Project

North Carolina GAP Analysis Project

In North Carolina, green anoles range up the Atlantic coast to Virginia, but have a more jagged latitudinal distribution moving west across the state. Known records (Palmer and Braswell 1995) decline in latitude as one approaches the city of Charlotte from the east, tapering to just barely north of the South Carolina border. Then, some curious incursions and apparently disjunct populations are recorded from west of the I-77 corridor (what generally constitutes Western North Carolina).

Anolis carolinensis from Chimney Rock, NC.

Anolis carolinensis from Chimney Rock, NC.

With one season under the belt, so to speak, my Herpetology class at the University of North Carolina Asheville and I have found what we think might be the closest population of green anoles to Asheville, North Carolina. This population occurs in a steep valley near Chimney Rock, North Carolina. Interestingly, they have access to steep south-facing rocky slopes above the valley. I thought I would poll the group and see if anyone has any hot tips on anole populations in the east Tennessee/Western North Carolina region. We are considering making this a Herpetology class project in the future- to map out the anole populations in this part of the state to see if they are in fact disjunct and whether any additional populations can be found. We will keep AA posted.

Spot the Differences: Native vs. Exotic Anoles

Recently, the book Invasion Genetics: the Baker & Stebbins legacy was published online, covering various aspects of the evolutionary biology of invasive plant, animal, fungus and microbe species. One chapter, coauthored by myself, will particularly appeal to Anole Annals readers, as it provides an extensive review of the genetic, evolutionary and ecological differences between exotic and native anole species. Anoles are highly appropriate for a book on invasion genetics, because of the large body of research on both the genotype and phenotype of anoles, the many species that have exhibited the ability to establish populations outside of their native range, and the exponentially increasing number of exotic anole populations since the onset and intensification of travel and trade in the Caribbean and across the world.

The chapter contrasts what is known about the natural dispersal and colonization processes of Caribbean native anoles to the human‐mediated translocation of exotic anoles in the Anthropocene. Previously, natural colonization events rarely occurred, whereas the rate of new (exotic) anole colonizations has increased drastically. The main argument of the chapter is that the many exotic introductions have eroded the previously strong biogeographic structure of anole assemblages.

Exotic Anolis cristatellus on St. Martin

An exotic crested anole male (Anolis cristatellus) on the island of St. Martin. (photographer: Wendy Jesse)

Continue reading Spot the Differences: Native vs. Exotic Anoles

Anole Watches Dirt Cheap Just Today: Act Quickly!

 

 

 

 

 

 

It’s that twice in the year opportunity to get AA anole watches at bargain basement prices in honor of today’s clock changes. Get ’em before they run out of stock (or, more importantly, before midnight). Use Code:

DAYLTSAVINGS

Trunk-Crown: Anolis allisoni

Crown-giant: Anolis equestris

Twig: Anolis occultus

Trunk-ground: Anolis marcanoi

Grass-bush: Anolis pulchellus

Cuban Trogon Eats Anole–But Which One?

trogon-eating-anole

Aslam Ibrahim Castellón Maure posted this photo on his Facebook page. Taken in the Zapata Peninsula, it’s a Cuban trogon eating an unidentified anole. The Cuban trogon, or tocoroco, is the national bird of Cuba. But what species of anole? Hispaniolan trogons have also been observed eating anoles. More surprisingly, their lovely relative the quetzal has also been reported to do so, notable because quetzals are thought to be primarily frugivorous.

Species–Area Relationships and Additive Partitioning of Diversity of Native and Nonnative Herpetofauna of the West Indies

Figure 1. Organism photograph; Anolis cristatellus wileyae; Photograph credit (De Gao)

Figure 1. Anolis cristatellus wileyae; Photograph credit (De Gao)

In his classic work on biogeography, Darlington (Zoogeography: The geographic distribution of animals, John Wiley, New York, 1957) used a small sample of Caribbean island herpetofaunas to show that larger islands have more species. Recently, Gao and Perry reevaluated the regional biogeographical patterns of West Indian native and nonnative herpetofauna by assessing multiple species–area relationship (SAR) models, C– and Z-values (typically interpreted to represent insularity or dispersal ability), and the contribution of area effects towards explaining among-island heterogeneity.

But this time, their sample included over 1600 islands.

Figure 2. Map of the West Indies, showing the distribution of 1668 studied islands

Figure 2. Map of the West Indies, showing the distribution of 1668 studied islands

They found that SARs were best modeled using the Cumulative Weibull and Lomolino relationships, both of which can display both convex and sigmoid curves. However, the Cumulative Weibull regressions were more likely to display sigmoid curves within the broad range of island sizes studied – from tiny rocks to major islands like Hispaniola and Cuba. These findings imply that the flexibility of Cumulative Weibull and Lomolino distributions may have been under-appreciated in the literature. Z-values for all herpetofauna in the current study were lower than those reported by Darlington, perhaps because the earlier study oversampled larger islands.

Figure 4. Comparison of Z-values with previous studies

Figure 4. Comparison of Z-values with previous studies

Broadly consistent with previous studies, Z-values reported by Gao and Perry were ranked: (1) native > nonnative; (2) reptiles > amphibians; (3) snake > lizard > frog > turtle > crocodilian. Area had a weaker effect on among-island heterogeneity for nonnative species than for native species, as might be expected given the different processes of species accumulation in the two groups. Lower extinction rates could contribute to low between-island heterogeneity for native species. In contrast, the arrival of non-native species is more closely related to economic activity than to island size. For most small islands less affected by human activities, extinction and dispersal limitation are the primary processes producing low species richness. High levels of among-island heterogeneity underlie the high value of this region as a biodiversity hotspot.

So what does this tell us about anoles? To the extent that the lizard patterns reflect the large number of Anolis species in this region, the findings imply that within-island speciation, rather immigration related to island area, is the main source of new native species in this region. Not surprisingly, perhaps, human activities accelerate the rate of over-water dispersal of both native and non-native species and weaken the area effect within the region. This leads to increases in among-island heterogeneity under human-mediated conditions. Anoles may be more likely to be affected by the increase in extinction rates that is typically seen on the smallest islands.

Figure 3A. Linear Regression_ lizard

Figure 3A. Linear Regression_ lizard

Figure 3B. Linear Regression_ lizard native

Figure 3B. Linear Regression_ lizard native

Figure 3C. Linear Regression_ lizard nonnative

Figure 3C. Linear Regression_ lizard nonnative

Figure 5A. SAR and additive diversity partitioning_ lizard

Figure 5A. SAR and additive diversity partitioning_ lizard

Figure 5B. SAR and additive diversity partitioning_ lizard native

Figure 5B. SAR and additive diversity partitioning_ lizard native

Figure 5C. SAR and additive diversity partitioning_ lizard nonnative

Figure 5C. SAR and additive diversity partitioning_ lizard nonnative

 

Reminder: Submit Photos for Anole Photo Contest 2016!

sheplani

One of last year’s winners, Anolis sheplani by Carlos de Soto

Thank you to everyone who has sent in photos for our calendar contest, we’ve been getting some excellent submissions! There are FIVE DAYS left before the deadline (this Friday, November 4) so if you plan to submit, be sure to do so soon!

As a reminder, here are the contest rules:
Submit your photos (as many as you’d like) as email attachments to anoleannalsphotos@gmail.com (note the change in email address from last year). To make sure that your submissions arrive, please send an accompanying email without any attachments to confirm that we’ve received them. Photos must be at least 150 dpi and print to a size of 11 x 17 inches. If you are unsure how to resize your images, the simplest thing to do is to submit the raw image files produced by your digital camera (or if you must, a high quality scan of a printed image).  If you elect to alter your own images, don’t forget that it’s always better to resize than to resample. Images with watermarks or other digital alterations that extend beyond color correction, sharpening and other basic editing will not be accepted. We are not going to deal with formal copyright law and ask only your permission to use your image for the calendar and related content on Anole Annals (more specifically, by submitting your photos, you are agreeing to allow us to use them in the calendar). We, in turn, agree that your images will never be used without attribution and that we will not profit financially from their use (nobody is going to make any money from the sale of these calendars because they’ll be available directly from the vendor).

Please provide a short description of the photo that includes: (1) the species name, (2) the location where the photo was taken, and (3) any other relevant information. Be sure to include your full name in your email as well. Deadline for submission is November 4, 2016.

Good luck!

Are Jumping Genes Driving the Radiation of Anolis Lizards?

fig1

Studying Caribbean lizards when you are based in Northern Europe is maybe not the most obvious thing to do. But I couldn’t resist the charm of Anolis and embarked on a postdoc project with the aim of unlocking some of their mysteries. Since I have a background in comparative genomics, I was particularly excited about one odd feature of the green anole genome: unlike other vertebrates, it is remarkably cluttered with transposable elements.

Transposable elements (or TEs for short) are popularly referred to as jumping genes because they can copy and paste themselves within a genome. Traditionally TEs have been considered to be a ‘junk’ part of the genome, selfishly proliferating in an arms race with the host genome that is trying to keep TEs in check. As a defense, the host genome is usually restricting TEs from entering functionally important regions. But in the green anole even the Hox gene clusters, developmental control regions of the genome that are usually kept neat and tidy, got invaded by these TEs.

Even junk can become valuable in a different context. Indeed, there is circumstantial evidence that TEs can contribute to diversification and adaptation. For example, genomic incompatibilities arising from TE insertions have therefore been suggested to promote reproductive isolation. In other words, proliferation of TEs should be positively associated with speciation. Furthermore, some evolutionary innovations, like the mammalian placenta, appear to involve co-option of TEs for gene regulation.

Does the odd feature of the green anole genome indicate that something interesting is going on with TEs also in the evolutionary history of Anolis lizards? My study published in the Proceedings of the Royal Society of London B is a first attempt to take a closer look.

To this end, I compared the DNA sequences of Hox gene clusters of 30 lizard and snake species, including 20 Anolis species. I reconstructed the history of TE invasions of Anolis lizards and linked this to patterns of diversification across the phylogeny. The results revealed that there was a burst of TE activity in the lineage leading to extant Anolis. It did not stop there – TEs have continued to accumulate during speciation events, such that extant Anolis whose evolutionary history is characterized by many speciation events also have accumulated more TEs than lineages with relatively fewer speciation events. This finding supports the hypothesis that proliferation of TEs contributes to reproductive isolation, but what is cause and what is consequence remains to be seen.

fig4

Could TE activity also have contributed to the morphological differences that characterize Anolis ecomorphs? Well, I did not find evidence for this as yet, but this hypothesis is much more difficult to test since we need to learn more about developmental genetics to know where in the genome we should look. Nevertheless, I think this study shows that we can begin to unravel the genomics of adaptive radiation of these wonderful lizards!

 

Nathalie Feiner. 2016. Accumulation of transposable elements in Hox gene clusters during adaptive radiation of Anolis lizards. 

The Origin of Adhesion in Geckos

higham-humeralis2-fg

Gonatodes humeralis on a tree trunk in French Guiana. Photo taken by Tim Higham.

The ability for some lizards to adhere to smooth surfaces has attracted considerable attention from scientists, engineers, and the public for quite some time. Anoles can exhibit considerable amounts of adhesion, although they lack the fancy specializations that most pad-bearing geckos have, such as the upward curling of the digit tips (to detach the adhesive system) before the foot is lifted from the surface. This might be related to the higher adhesive forces exhibited by geckos in comparison to anoles. Unlike anoles, the gecko adhesive system has appeared and disappeared several times. The simplification of the system appears linked to the transition from a climbing to terrestrial lifestyle. However, it has been unclear how this innovation might arise and how the early stages might appear.

The evolution of digit form in Gonatodes

That’s where the genus Gonatodes comes into play. Gonatodes is a reasonably diverse (27 species are currently recognized) and ancestrally padless clade of mostly diurnal sphaerodactylines that is sister to Lepidoblepharis. After examining the microscopic anatomy of a number of species from the genus Gonatodes, it was clear that one species (G. humeralis) was a bit different. Upon investigation of the subdigital micro-ornamentation, we found that the spinules in the vicinity of the digital inflection are longer than in other species of Gonatodes and are expressed as branched, spatulate-tipped setae on the free distal margin of these scales. In other words, it looked like this species of gecko was showing signs of incipient adhesion without actually having any toepads. Now that the morphological differences were identified, we wanted to know how/if this translates into functional and ecological differences.

Gonatodes humeralis in French Guiana. Photo by Tim Higham.

Gonatodes humeralis in French Guiana. Photo by Tim Higham.

The origin of frictional adhesion in geckos

In collaboration with Anthony Russell and Tony Gamble, We sought to understand how this incipient adhesive system works in nature, whether G. humeralis can generate adhesive force, and what it permits these lizards to do on smooth surfaces in the lab. I traveled to French Guiana with Clint Collins, a Ph.D. student in my lab, in order to collect G. humeralis and examine its adhesive force. After that, Anthony Russell and I traveled to Trinidad & Tobago to collect a number of other species, in addition to G. humeralis, to see how they used their habitat and whether G. humeralis could out-perform the other species in the lab. To our surprise, G. humeralis was found on smooth bamboo stalks, whereas other species lived on the ground or on rough tree trunks. In the lab, G. humeralis could exhibit considerable adhesive force (for its size), exceeding that of skinks, but falling short of anoles and other pad-bearing geckos. That’s quite impressive for a gecko that lacks all of the bells and whistles of a typical pad-bearing gecko! Importantly, no other species of Gonatodes that we collected could generate any measurable force, agreeing with our previous morphological analyses! Now to the locomotor tests. Pad-bearing geckos are renowned for their ability to ascend vertical smooth surfaces, so we decided to test the ability of different species to climb different inclined smooth acrylic surfaces. A closely related species, G. vittatus, was unable to ascend any incline greater than 40 degrees. However, G. humeralis could climb up a vertical surface, as shown above.

 

 

T. Higham looking for geckos in Trinidad

T. Higham looking for geckos in Trinidad

What does all of this mean?

Although major transformations in vertebrate evolution are common, and often very complex, their origins are often elusive. We offer a glimpse into the early development of the complex adhesive system of geckos. However, the setae of G. humeralis are effective without all of the muscle, tendon, and vascular modifications that are often associated with gecko adhesion. Much like the anoles, the relatively simple setae of G. humeralis provide a dramatic advantage in areas of the habitat typified by leaves or other smooth surfaces (e.g., bamboo stalks). As noted in our paper, our discovery of a functionally intermediate form in the transition to frictional adhesion in a lineage of geckos highlights a statement by Ernst Mayr back in 1960: “Perhaps most astonishing is the relative slightness of reconstruction that seems to be necessary for successful adaptation to rather drastic shifts of adaptive zones.” The relatively simple morphological modification in G. humeralis has permitted a dramatic shift in biomechanics and likely habitat use.

The paper:

Higham, T.E., Gamble, T. and A.P. Russell. 2016. On the origin of frictional adhesion in geckos: small morphological changes lead to a major biomechanical transition in the genus Gonatodes. Biological Journal of the Linnean Society. Doi: 10.1111/bij.12897.

The Genetic Consequences of Adaptive Dewlap Divergence

Figure 1 from Ng et al. 2016 showing the transect sampling spanning Anolis distichus populations differing in dewlap color (T1-4) as well as control transects (C1-4). Pie charts show dewlap color variation (top row), mitochondrial clade membership (middle row) and nuclear genetic cluster assignments (bottom row).

Figure 1 from Ng et al. 2016 showing the transect sampling spanning Anolis distichus populations differing in dewlap color (T1-4) as well as control transects (C1-4). Pie charts show dewlap color variation (top row), mitochondrial clade membership (middle row) and nuclear genetic cluster assignments (bottom row).

We sure love dewlaps here on Anole Annals! These flashy signals are incredibly diverse in size, color and pattern, and always make for a gorgeous image (e.g. 1, 2). Yet, we still have much to learn about why there is such a diversity of dewlaps and, furthermore, what are the consequences of such diversity? Previous work by Leal and Fleishman (2002, 2004) suggests that some of this dewlap diversity is due to adaptation for more efficient communication in different habitats. In a recent paper, we sought to identify whether the consequence of such adaptive trait divergence was speciation, or whether locally adapted dewlaps are maintained despite gene flow.

Anolis distichus shows remarkable geographic variation in dewlap color that predictably varies with habitat in a manner consistent with adaptation (Ng et al. 2013). This variation in color across Hispaniola gave us a great opportunity to conduct replicated analyses to identify whether adaptive differences in dewlap color consistently leads to the same genetic outcome.

We sampled populations in the Dominican Republic along five transects that transitioned from populations with orange dewlaps to those with cream or yellow dewlaps. For a comparison, we also sampled four ‘control’ transects where all populations shared a similar dewlap color. If dewlap differences are associated with speciation, we expected to see genetic differentiation between populations at either ends of the transect as this would suggest some level of reproductive isolation. Otherwise, transects showing no evidence of genetic structure would suggest that individuals are freely mating regardless of dewlap color.

Looking at the genetic structure of both nuclear and mitochondrial DNA along each transect, we found that geographic variation in dewlap color is associated with both speciation and gene flow. Three transects showed distinct genetic structure consistent with speciation, with one in particular only showing evidence of hybrids at one site which was a mere 0.89-1.55km away from other sampled sites. On the other hand, the other two transects did not look much different to the control transects, suggesting ongoing gene flow regardless of phenotypic differences.

Considering all transects together, I think there are two main take-aways from our results. First, finding evidence of gene flow across a sharp geographic shift in dewlap color must mean that strong selection is maintaining geographic variation in dewlap color; perhaps due to adaptation to different habitat types. Second, it appears that dewlap divergence does not necessarily lead to speciation. More work, however, is needed along these lines to understand whether the dewlaps we are characterizing as different are actually different from an anole’s perspective or in particular light environments (e.g. 1).

Hundreds of Genes Help to Resolve Green Anole Evolutionary History in North America

Anolis carolinensis from North Carolina. Photo from Carolina Nature.

One of the most well-known species of anole lizard is Anolis carolinensis, AKA the green anole, which is the only anole native to the continental United States. As a classic model for ecology and behavior, this lizard was the first species of reptile to have a complete genome sequence. Interestingly, only after it became a genomic model, numerous studies (Tollis et al. 2012, Campbell-Staton et al. 2012, Tollis & Boissinot 2014) sought to understand how genetic variation is structured across the geographic range of A. carolinensis,  and to infer historical migration patterns and demographic events to explain the current distribution of green anoles. However, these studies still left many questions unanswered, mostly due to the fact that they were limited in terms of numbers of genetic markers. Now, we have published a new paper in Ecology and Evolution that used a targeted enrichment method to capture more than 500 sequence markers and provide a clearer picture of A. carolinensis historical biogeography.

What we knew about Anolis carolinensis phylogeography

Collecting green anoles for phylogeographic study has been a real hoot, taking us all over the country. Anolis carolinensis ranges across subtropical North America, and consists of five geographically structured genetic clusters supported by both mitochondrial (mtDNA; see Tollis et al. 2012 and Campbell-Staton et al. 2012) and nuclear (nDNA) markers (see Tollis et al. 2012, Tollis & Boissinot 2014). Three of the clusters are found in Florida : one whose distribution primarily hugs the Northwestern coast of the peninsula, another along the Eastern coast of the peninsula, and a third relegated to South Florida. The continental mainland, while making up most of the area of green anole range, harbors only two clusters: one occupying North Carolina and South Carolina, and another from Georgia, west of the Appalachian Mountains and across the Gulf Coastal Plain into Texas.

One confusing result from earlier studies of A. carolinensis molecular phylogeography was the placement of the most basal lineage in NW Florida (Tollis et al. 2012, Campbell-Staton et al. 2012). This didn’t make sense biogeographically, since it is believed that the species dispersed to the continental mainland from western Cuba (Buth et al. 1980, Glor et al. 2005). However, a subsequent nDNA study (Tollis & Boissinot 2014) produced a multi-locus species tree to show that southern Florida harbors the most ancient lineage of A. carolinensis. This discovery of mito-nuclear discordance provided a more satisfying biogeographical explanation that only needs to invoke overwater dispersal to South Florida from Cuba.

(A) Phylogenetic relationships of the major green anole lineages inferred from the ND2 mtDNA locus. (B) Phylogenetic relationships of the major green anole lineages using multi-locus species tree approach (1 mtDNA and 3 nDNA markers).

Different genetic datasets tell different stories about Anolis carolinensis evolutionary history. (A) Phylogenetic relationships of the major green anole lineages inferred from the ND2 mtDNA locus. (B) Phylogenetic relationships of the major green anole lineages using multi-locus species tree approach (1 mtDNA and 3 nDNA markers). Adapted from Manthey et al. 2016.

From there, things remained unresolved even with nDNA. For instance, while the split between South Florida and the rest of the species received full statistical support in Tollis & Boissinot (2014), the relationships between the other clades were less supported, making it difficult to determine if the A. carolinensis mainland clades arose from separate Floridian sources.

The data used in Manthey et al. 2016

To our knowledge, this is the first Anolis phylogeography study to use targeted enrichment, so I thought I would elaborate on the nature of this kind of dataset. Anchored hybrid enrichment (AHE) relies on probes designed from conserved genomic regions ascertained from a panel of vertebrate genomes – including A. carolinensis – which are flanked by non-conserved regions (the level of conservation in determined by PhastCons scores from the UCSC Genome Browser). DNA samples are pooled, and a set containing thousands of probes is used to enrich libraries that get sequenced on an Illumina platform and assembled into contigs, producing hundreds of homologous loci.

Here’s the breakdown of what we ended up with in the new study: our sample contained 42 individual anoles from 26 localities across eight states, and we were able to obtain 487-512 loci per individual, with an average contig length of 629bp, and an average of 17 SNPs per locus including an average of six parsimony-informative SNPS per locus. Roughly speaking, that’s one parsimony-informative SNP every 100bp for 500 loci, so about 3,000 parsimony-informative SNPS  = not bad! For what it’s worth, the 10 nDNA A. carolinensis markers obtained by more traditional PCR/Sanger sequencing contained about one SNP every 100bp as well (see Tollis et al. 2012 and Tollis & Boissinot 2014). Therefore, AHE produced hundreds more informative loci at a fraction of the cost.

New insights into Anolis carolinensis phylogeography using targeted loci

Using different statistical clustering methods (DAPC and Structure), Manthey et al. supports the same five  genetic clusters as previously described. However, there is now a fully resolved species tree – arrived at using multiple methods. First, the South Florida clade is the most ancient lineage of green anoles, likely splitting off from the rest of the species during the Miocene or Pliocene. However, there is now 100% support for a sister-group relationship between the mainland clades, massively simplifying the story of A. carolinensis. Green anoles likely remained in Florida until the Pleistocene, dispersing northward and onto the mainland where two lineages evolved independently- one along the Atlantic coast in the Carolinas, and another dispersing across the Gulf Coastal Plain.

(A) Map showing geographic localities of 42 green anoles selected for targeted enrichment. (B) Results of species tree analyses. Colored symbols correspond to the five geographic and genetic clusters. Adapted from Manthey et al. (2016).

(A) Map showing geographic localities of 42 green anoles selected for targeted enrichment. (B) Results of species tree analyses. Colored symbols correspond to the five geographic and genetic clusters. Adapted from Manthey et al. (2016).

We also found that despite the best resolution to date for the A. carolinensis species tree, incomplete lineage sorting is rampant across these loci, highlighting the need for these kinds of datasets for phylogeographic studies at this evolutionary distance. For instance, the only clade with any gene trees supporting exclusive ancestry was South Florida: meaning on a given gene tree, pre-defined “clades” are often paraphyletic. The reason the species trees agreed in their topologies is due to fact that they probabilistically invoke the coalescent process, which incorporates incomplete lineage sorting. Previous studies, using ≤10 loci, simply lacked enough statistical power to do this confidently.

More work to be done

As with most scientific endeavors, the new study resolves some outstanding questions but also begs new questions. For instance, although we were able to infer gene flow between the Gulf-Atlantic and NW Florida clades, the degree of allele sharing between populations is still not clear. There seems to be some admixture between the Gulf-Atlantic and Carolinas clades south of the Appalachian Mountains in Georgia, suggesting elevational gradients provide a more effective barrier to gene flow in this species than riverine barriers. Also, the divergence times of the green anole clades are still based only on molecular clock models and could benefit greatly from informative fossils calibrations.

They Simply Don’t Get It: Misguided Conservation Policies in Taiwan Continue to Promote Anole Slaughter

img_0734

A familiar face – a brown anole male from my study site in southwestern Taiwan.

For the past few years the authorities of Chiayi County, southwestern Taiwan, have paid bounties to citizens for brown anoles they collect. Every year the bounty per lizard has decreased and yet they spend their budget and the brown anole persists. This year is the same – a lower bounty – but with a slight difference; the green iguana is now also on the list. In theory, it would be ideal if the invasive lizards can be exterminated, but in reality, I am convinced, they will fail. The brown anole exists in southwestern and eastern Taiwan, and simply targeting them in one location will simply retard their dispersal to new localities (and even with the bounty in place, their distribution is extending). We recently published the results of a study in which we compared brown anole specimens from southern and eastern Taiwan, and we found that there are some variations, most likely due to adaptations to the local habitats (no surprise there!). What this means is that in Taiwan, if brown anoles can reach (either by natural dispersal or with the help of people) open disturbed habitats, with structures that can be used as perches, they will most likely adapt and establish new populations.

Me with a green iguana (Iguana iguana), that was removed by firefighters from someone’s garden in Chiayi City.

Me with a green iguana (Iguana iguana) that was removed by firefighters from someone’s garden in Chiayi City.

eutropis-multifasciata-05

A sun skink (Eutropis multifasciata) from Tainan City, southwestern Taiwan.

And then I wonder why is the brown anole singled out for extermination. Eutropis multifasciata, a relatively large invasive skink, also exists in Chiayi County. Due to its size, it has greater abilities than the brown anole to compete with and prey upon native lizards and arthropods, and yet, they are not on the list. People regard Hemidactylus frenatus, a very common gecko species in urban areas in central and southern Taiwan, as a native species, not realizing that it too is an invasive species.

Hemidactylus frenatus is a very common species in southern Taiwan, where they are often seen near external lights on the walls of buildings.

Hemidactylus frenatus is a very common species in southern Taiwan, where they are often seen near external lights on the walls of buildings.

My honest opinion is they have to accept that just like Hemidactylus frenatus, Anolis sagrei will spread in Taiwan and become a common sight in areas disturbed by humans. They will become (and in many ways already are) part of local ecosystems as competitors, predators and prey. Conservation efforts should thus rather be directed at the re-establishment and conservation of large areas of secondary forests in disturbed lowland areas of Taiwan. This would not only contribute to the conservation of native forest species, but such areas will also function as reservoirs for species like Japalura swinhonis that can compete with Anolis sagrei, as well as being barriers for its spread. People should also be encouraged to be more tolerant towards snakes, in particular non-venomous species such as Lycodon (Dinodon) rufozonatum rufozonatum, Lycodon ruhstrati ruhstrati, and Sibynophis chinensis chinensis, which can prey upon brown anoles. And, finally, an important part in the conservation efforts of native urban wildlife is to develop a better appreciation among the general public of native birds and lizards in urban gardens and parks, and to reduce the impact on these animals by their pets, especially domestic cats (Felis catus), which may prey on them.

 

Just for interest sake, here is a current list of exotic invasive lizards in Taiwan:

Anolis sagrei

Eutropis multifasciata

Hemidactylus frenatus

Iguana iguana

Lepidactylus lugubris

Physignathus cocincinus