Shipping Live Lizards via Cargo from the Dominican Republic

Assuming you can’t get your lizards to fly themselves to your lab, you might want to read this information on how to transport them home. Photo from http://www.deviantart.com/morelikethis/27371609

After years of transporting live anoles from the Caribbean to my lab in the United States in my checked luggage, this summer in the Dominican Republic, a Delta Airlines agent refused to accept our cooler full of lizards as luggage for our plane. After pursuing every avenue we could think of, it became clear that our only remaining option was to ship the lizards as cargo. We spent several days working out this process, and after making a number of mistakes, we finally arrived at a relatively smooth procedure. To prevent others from having to learn these steps on their own, if such a situation arises for other researchers, we’ve written out the steps that worked for us below. The details provided are for the airport in Santo Domingo, but this general approach may be helpful in other locations as well. (And, if you find yourself in the Dominican Republic in the near future, I’d be happy to give you the contact information for all of the folks listed below.)

Research on Behavioural Plasticity of Jamaican Anoles

Jamaican Anole in Bermuda, Photo by Gerardo Garcia

Jamaican Anole in Bermuda, Photo by Gerardo Garcia

I would like to know if there is someone working with Anolis grahami in Jamaica?? Or is interested??

 As part of my Ph.D. at the University of Salford in Great Britain, I will investigate behavioural plasticity in lizards, more specifically in the Jamaican Anole. Many populations show evolutionary responses to novel and changing environments; how such information becomes associated with a behavioural response is central to understanding animal adaptation to new environments.  Species with great behavioural plasticity can adapt to new and changing environments, but could also easily adjust to captive environment.

The Jamaican anoles, originally endemic to the island of Jamaica, were purposefully introduced onto Bermuda in 1905, where they now have an island-wide distribution. We would like to investigate how this species adapts its behaviour to a new environment (Bermuda) and to captivity (Zoo environment). And I would also need data from their original habitat, Jamaica. That is why I’m searching for a partnership with someone in Jamaica.

Evolution 2015 Recap

Logo for the Evolution 2015 conference.

Evolution 2015 is officially over and we have all sadly left beautiful Guarujá,  Brazil. There were a lot of great talks and posters and a great representation of South American students and researchers. For coverage on the conference as a whole, check out #evol2015 on twitter! The herps were few and far between (I only saw 2 in my 16 days in Brazil!) but the posters and talks on herps were numerous. Unfortunately, anoles were poorly represented at Evolution this year with only three anole talks and a couple of others that briefly highlighted anoles. If you weren’t able to make it to Brazil, I’ve got the recap for you here.

click to read more about Travis Hagey's research

A glimpse at the variation in gecko toepads

Starting off in one of the first sessions was a talk by Travis Hagey titled “Independent Origins, Tempo, and Mode of Adhesive Performance Evolution Across Padded Lizards.” Although his talk was mostly about geckos, he did shine the spotlight on anoles for a few minutes. He focused on the phylogenetic pattern of toepad adhesion in pad-bearing lizards: geckos, skinks, and anoles. Specifically he looked at how clinging ability (measured as angular detachment – check out one of his videos showing this) varied within and among clades. Unsurprisingly, he found that anoles don’t cling nearly as well as geckos. He also demonstrated that gecko toepad diversification best followed a Brownian motion model with weak OU and anole toepad diversification was best fit by a strong Ornstein–Uhlenbeck process. In other words, gecko toepads diversified slowly over a very long period while anoles were quickly drawn towards an optimum over a short time-period. Travis concluded that these patterns explain why there is a large amount of diversity in gecko toepads but not in anole toepads.

Next up was Joel McGlothlin, who also gave a non-anole talk titled “Multiple origins of tetrodotoxin‐resistant sodium channels in squamates.”

Anole Densities Three Times Higher on Antiguan Islands Cleared of Rats and Mongooses

I suppose we should be glad that Antiguan racer is back from the brink of extinction, even if it’s bad news for this Antiguan anole.

An article in Oryx recently trumpeted the successful elimination of rats and mongooses from the 15th Antiguan offshore island. Once these invasive depredators have been removed, local species, including the endangered Antiguan racer have thrived, increasing in population over the last 20 years from ca. 50 to over 1,000. Though not endangered, anoles have benefited as well, with three-fold higher densities on islands on which the invaders have been removed compared to those on which they remain.

Anoles Can Find Their Way Home

Photo by Manuel Leal in the New York Times

The New York Times yesterday had a long article on Manuel Leal’s research on the homing ability of Anolis gundlachi. Manuel has discovered that if you catch a gundlachi and let it go somewhere else in the forest, it will very quickly find its way back to its tree. He’s done a number of experiments to see if they’re using magnetic sense, polarizing light or telepathy (ok, maybe not the last one), but so far has been unable to figure out how they manage to get home. In fact, as the article states, he’s looking for suggestions. Read the article and give him such much-needed help!

A Brown Anole with a Taste for Spiders

Photo by Karen Cusick

Karen Cusick keeps a close eye on her backyard anoles and reports her observations–with lovely photos–on her blog, Daffodil’s Photo Blog. Recently, she described a brown anole that has a penchant for eating spiders, and she told us how it does it: “It sits very still and carefully watches the grass near the back door, and then suddenly sprints over to a spot in the grass and comes up with a spider in its mouth. It must really like spiders! Ants, on the other hand, are pretty much ignored by anoles. I’ve watched ants walk right past anoles, even walking over their feet or tails, and the anoles don’t even seemed tempted.”

Puerto Rican Anole Eats Gecko

Photo by Rube Irizarry

Photo by Rube Irizarry

Rube Irizarry posted the photo on Facebook’s Biodiversidad de Puerto Rico page. I’m guessing it’s an Anolis cristatellus eating a hapless Hemidactylus, whose tail was previously nabbed by who knows what.

Puerto Rican Field Work

Lizard watching in Puerto Rico

The Leal Lab is hard at work in Puerto Rico this summer, and they’re reporting all about it on Chipojo Lab.

Ellee Cook, who recently graced these pages with a report on fever in anoles, is studying the behavior of female A. gundlachi and is reporting on the trials and tribulations of behavioral field work.

Meanwhile, Edward Ramirez is studying the physiology of hybrids between the grass anoles A. pulchellus and A. krugi.

Check out the details over at their site.

Racetrack for studying the sprint speed of hybrid lizards.

Puerto Rican Lizard Song

Liam Revell has kindly pointed out this awesome song from the Puerto Rican children’s show Atencion Atencion.

Here’s Liam’s translation:

“Un lagartijo se metió en la cueva,

de pronto asomó la cabeza,

miró para un lado y al otro,

y que pasó, y que pasó…”

In English:

“An anole went into the cave,

suddenly he poked out his head,

he looked to one side and the other,

and what happened, and what happened…”

Female Anoles Retain Responsiveness to Testosterone Despite the Evolution of Androgen-Mediated Sexual Dimorphism (Cox et al 2015)

IMG_1449

Female brown anole (Anolis sagrei).

My foray into lizard studies (including  anoles) began when I joined Bob Cox’s (no relation!) laboratory at the University of Virginia around three years ago, after years of studying the evolution and physiology of snakes (e.g., Cox and Secor 2008; Cox and Secor 2010; Cox et al. 2012; Cox and Davis Rabosky 2013). One aspect of anoles that fascinates me is that they exhibit great diversity in sexual dimorphism (any difference in any trait between the sexes). Many species are highly dimorphic in traits like head shape, dewlap size (and color), and body size, while other species are sexually monomorphic in some or all of these traits. This evolutionary diversity in whether or not a trait differs between the sexes suggests that dimorphism can evolve relatively rapidly. These traits are likely encoded by genes on the shared autosomal genome and thus shared between the sexes, which should theoretically impede evolution of these traits. One solution to this problem is to link the expression of shared traits (such as dewlaps, head shape, and body) to sex steroids (androgens and estrogens). However, typically “female” steroids such as estrogens have important functions in males (e.g., Sanger et al. 2014), and typically “male” steroids such as testosterone have important functions in females (e.g., Ketterson et al. 2005). Thus, the evolution of sexual dimorphism requires not only linking the expression of dimorphic traits to testosterone in males, but also unlinking testosterone from the expression of these traits in females. Unfortunately, reflecting the recent post by Ambika Kamath pointing out the paucity of research on female anoles, we know relatively little about how testosterone impacts growth and development in female lizards. Our work begins to address this issue by studying how both male and female brown anoles respond to testosterone (Cox et al. 2015).

Brown Anole

Male (left) and female (right) brown anoles. The males are much larger, with bigger dewlaps. Males and females differ in body shape and coloration as well.

Our research was focused on brown anole lizards (Anolis sagrei), which have become commonly used in evolution and ecology research. This species was ideal for our studies because they are very sexually dimorphic, with males much larger than females (averaging up to 33% longer, and three times as massive), possessing much larger dewlaps, along with a suite of other morphological divergences (differently shaped heads, longer forelimbs, etc).  Importantly, previous work by Bob Cox and Ryan Calsbeek (and their collaborators) has shown that the expression of many of these traits is altered by testosterone, which naturally circulates at much higher levels in males (Cox et al. 2009a; Cox et al. 2009b). We followed up that previous research and used hormone manipulations to test how testosterone impacts the development of a suite of sexually dimorphic characters in both males and females. We were specifically interested in testing whether females could respond to testosterone and whether or not they responded to testosterone in the same way as males. If females respond to testosterone as males do, then this implies that the decoupling of dimorphic trait expression between the sexes is accomplished merely by circulating testosterone at lower levels in females.

Xray

X-ray of juvenile brown anoles

We conducted this experiment on juveniles (offspring of brown anoles captured from Great Exuma in The Bahamas) that were 5-6 months of age at the beginning of the experiment. This is a point in development when sexual dimorphism is just starting to develop, but the sexes are still pretty similar. We used small Silastic implants (about 5 mm in length) that were filled with either crystalline testosterone or a control. These implants were then surgically implanted into the coelomic cavity of both male and female anoles.  Most of my limited surgery experience has been with snakes (mostly Burmese pythons as part of my Master’s work with Stephen M. Secor at the University of Alabama), so it was interesting to learn the techniques used for small (about 2 g) lizards. We simply opened a small abdominal incision, inserted the implant, and the closed the opening with skin glue. We then allowed the lizards to develop naturally in the brown anole colony at the University of Virginia for about two months. At the end of that period, we measured a suite of traits in both sexes, including size (mass and length), metabolic rate, fat storage (by weighing the visceral fat bodies), growth of various skeletal elements (via X-rays), and dewlap size and color.

Dewlap

The dewlap was extended and traced on graph paper to measure area.

We found that males and females brown anoles responded similarly to testosterone for most traits. Both sexes with testosterone grew faster than the control animals, and females given testosterone grew at similar rates to males with testosterone. Testosterone also increased metabolic rate, and a decreased the amount of fat stored in both sexes. Beyond growth and energetics, we also found that testosterone stimulated the size and darkened the color (decreased brightness and saturation) of the dewlap. Interestingly, we did not find an impact of testosterone treatment on head shape (jaw length and head width) in either sex, which is perhaps not surprising in the light of Thom Sanger’s (and colleagues) work highlighting the role of estrogens in skull development (Sanger et al. 2014).

Figsum

Summary figure of the primary results from our recent paper (Cox et al 2015) on the impact of testosterone on the development of various traits.

Our work demonstrates that despite differing greatly in appearance from males, female brown anoles retain the physiological capacity to respond to T similarly to males, at least as juveniles. Thus, the evolution of sexual dimorphism in brown anoles can be explained simply by higher circulating testosterone in males. More broadly, our work suggests that sexual dimorphism can evolve simply by coupling trait expression to differences between the sexes in circulating testosterone, without unlinking trait expression from testosterone in females. Some of our recent and ongoing work continues to explore these themes by examining how testosterone impacts tissue-level transcriptomes and gene expression of growth-regulatory networks in brown anoles of both sexes, and how the gene expression response to testosterone might differ between species with different patterns of sexual dimorphism. Our ultimate goal with this research is to understand how the evolutionary modulation of interactions between developmental networks mediates the evolution of sexual dimorphism.

 

References

 

Cox, C. L., and A. R. Davis Rabosky. 2013. Spatial and temporal drivers of phenotypic diversity in polymorphic snakes. American Naturalist 182:E40-E57.

Cox, C. L., A. F. Hanninen, A. M. Reedy, and R. M. Cox. 2015. Females retain responsiveness to testosterone despite the evolution of androgen-mediated sexual dimorphism. Functional Ecology 29:758-767.

Cox, C. L., A. R. D. Rabosky, J. Reyes-Velasco, P. Ponce-Campos, E. N. Smith, O. Flores-Villela, and J. A. Campbell. 2012. Molecular systematics of the genus Sonora (Squamata: Colubridae) in central and western Mexico. Systematics and Biodiversity 10:93-108.

Cox, C. L., and S. M. Secor. 2008. Matched regulation of gastrointestinal performance in the Burmese python, Python molurus. Journal of Experimental Biology 211:1131-1140.

—. 2010. Integrated postprandial responses of the diamondback water snake, Nerodia rhombifer. Physiological and Biochemical Zoology 83:618-631.

Cox, R. M., D. S. Stenquist, and R. Calsbeek. 2009a. Testosterone, growth and the evolution of sexual size dimorphism. Journal of Evolutionary Biology 22:1585-1598.

Cox, R. M., D. S. Stenquist, J. P. Henningsen, and R. Calsbeek. 2009b. Manipulating testosterone to assess links between behavior, morphology, and performance in the brown anole Anolis sagrei. Physiological and Biochemical Zoology 82:686-698.

Ketterson, E. D., V. Nolan Jr., and M. Sandell. 2005. Testosterone in females: mediator of adaptive traits, constraint on sexual dimorphism, or both? The American Naturalist 166:S85-S98.

Sanger, T. J., S. M. Seav, M. Tokita, R. B. Langerhans, L. M. Ross, J. B. Losos, and A. Abzhanov. 2014. The oestrogen pathway underlies the evolution of exaggerated male cranial shapes in Anolis lizards. Proceedings of the Royal Society B 281:2014039, online early.

 

 

Page 126 of 301

Powered by WordPress & Theme by Anders Norén