New literature alert!

In Journal of Thermal Biology
Méndez-Galeano, Paternina-Cruz, and Calderón-Espinosa

Abstract

Vertebrate ectotherms may deal with changes of environmental temperatures by behavioral and/or physiological mechanisms. Reptiles inhabiting tropical highlands face extreme fluctuating daily temperatures, and extreme values and intervals of fluctuations vary with altitude. Anolis heterodermus occurs between 1800 m to 3750 m elevation in the tropical Andes, and is the Anolis species found at the highest altitude known. We evaluated which strategies populations from elevations of 2200 m, 2650 m and 3400 m use to cope with environmental temperatures. We measured body, preferred, critical maximum and minimum temperatures, and sprint speed at different body temperatures of individuals, as well as operative temperatures. Anolis heterodermus exhibits behavioral adjustments in response to changes in environmental temperatures across altitudes. Likewise, physiological traits exhibit intrapopulation variations, but they are similar among populations, tended to the “static” side of the evolution of thermal traits spectrum. The thermoregulatory behavioral strategy in this species is extremely plastic, and lizards adjust even to fluctuating environmental conditions from day to day. Unlike other Anolis species, at low thermal quality of the habitat, lizards are thermoconformers, particularly at the highest altitudes, where cloudy days can intensify this strategy even more. Our study reveals that the pattern of strategies for dealing with thermal ambient variations and their relation to extinction risks in the tropics that are caused by global warming is perhaps more complex for lizards than previously thought.

 

Méndez-Galeano, M. A., Paternina-Cruz, R. F., & Calderón-Espinosa, M. L. (2020). The highest kingdom of Anolis: Thermal biology of the Andean lizard Anolis heterodermus (Squamata: Dactyloidae) over an elevational gradient in the Eastern Cordillera of Colombia. Journal of Thermal Biology, 89, 102498.

Latest posts by Kristin Winchell (see all)