Crested Anole (Anolis cristatellus) under a leaf. Photo by Chris Thawley.

Conservation biologists have long been concerned about the effects of human development on species and environments. Urban habitats can significantly change lighting patterns for animals by increasing nocturnal ambient illumination. Artificial light at night (ALAN) has the potential to disrupt an organism’s physiology, behavior, and ecology. However, light pollution remains poorly studied and is a concern for urban herpetofauna.

Anolis lizards in Miami, Florida are a great system to study the effects of ALAN on behavior, health, reproduction, and survival. Anoles are diurnal and are adapted to a distinct photic habitat appropriate to their sun/shade preferences. However, many anole species have been observed active at night where artificial lights are prevalent. So, what are the effects of ALAN on anole fitness?

Chris Thawley, a postdoctoral researcher in the Kolbe Lab at the University of Rhode Island, is interested in whether ALAN  imposes selection on anoles and how they might adapt to these pressures. Chris conducted a field experiment introducing landscape lightning into a previously unlighted habitat within an urban matrix. For over two months, he assessed whether Brown Anoles (Anolis sagrei) and Crested Anoles (A. cristatellus) experienced higher levels of ALAN at their sleeping perches and if these lizards behaviorally avoided exposure to artificial light. Also, lizards were marked and followed to determine if light exposure impacted survival, growth, body condition, and physiology.

Chris found that A. sagrei and A. cristatellus lizards are not behaviorally avoiding ALAN at night. Anoles that were more exposed to artificial light had lower glucose levels compared to those that were less exposed. Also, there were no dramatic changes in reproduction, but ALAN reduced follicle size. Egg mass showed a positive relationship with snout-vent length (SVL) in lizards exposed to ALAN, which suggests that ALAN increases egg mass in larger lizards. Chris continues analyzing growth and survival data and aims to explore if there is a correlation between levels of corticosterone (CORT), melatonin, and glucose.