Tag: speciation

JMIH 2018: The Curious Case of Bark Anoles

The Bark Anole (Anolis distichus ignigularis) from the Río Recodo. Photo from Richard Glor’s Flickr.

The Bark Anole (Anolis distichus) is a highly polymorphic lizard widely distributed in Hispaniola. Anolis distichus is divided into 16 subspecies with dewlap colors ranging from deep wine red to pale yellow (Glor and Laport 2012). In the early days scientists, such as Albert Schwartz, argued that A. distichus is divisible into multiple subspecies according to an analysis of variation in body color and dewlap pigmentation. But, are they really subspecies?

During the 2018 Joint Meeting of Ichthyologists and Herpetologists (JMIH), Richard Glor shared his lab’s advances on the curious case of Bark Anoles. Anolis distichus populations have ecological, phenotypic and genetic differences. Previous studies show a correlation between dewlap phenotype and environmental variation; in drier habitats, lizards have smaller, brighter, yellow dewlaps, while those in wetter habitats have larger, less bright, orange dewlaps (Ng et al. 2012).

Previously, the Glor Lab found strong support for the hypothesis that A. distichus is comprised of numerous genomically distinct populations (MacGuigan et al. 2016). Genetic divergence was associated with a biogeographic barrier, but not with dewlap color. Also, they found evidence for hybridization in contact zones with limited gene flow and intrinsic reproductive isolation between subspecies (MacGuigan et al. 2016; Ng et al. 2016). Overall, these studies suggest that geographic isolation, as well as ecological specialization, contribute to speciation.

The Glor Lab continues putting together the pieces of the puzzle. Most recently, they sequenced and assembled whole genome sequence data for A. distichus to identify the genomic basis for species differences and speciation.

Signals and Speciation: Do Dewlap Color Differences Predict Genetic Differences?

Dewlap and genetic differences between co-occurring Anolis distichus and A. brevirostris

Dewlap and genetic differences between Anolis distichus and A. brevirostris at sites where they co-occur on Hispaniola.

Here at Anole Annals, we’re all familiar with the replicated evolution of different anole ecomorph types in the Greater Antilles. However, divergence into these different ecomorph classes is not enough to explain how the group became so speciose on these islands. Additional factors must therefore have promoted speciation throughout the history of the group.

One potential factor is the flashy anole dewlap. Dewlap diversification across anoles has led to the remarkable array of dewlap color, pattern and size we see today. If dewlap differences did indeed drive speciation in anoles, or are involved with the maintenance of species boundaries, we might expect that as differences in dewlap color and pattern increases between species, genetic differentiation will also increase through fewer hybridization events.

In our study that just came out in the Journal of Herpetology, Rich Glor, Anthony Geneva, Sabina Noll and I set out to test this using two widespread species from the Anolis distichus species complex, A. distichus and A. brevirostris. These two species co-occur in many locations on Hispaniola and, while they often differ in dewlap color where they do co-occur (yellow with an orange patch vs. all pale yellow), in other areas, they co-occur with similarly pale dewlaps. Using mitochondrial DNA, microsatellite and AFLP data, we investigated patterns of genetic differentiation at four sites: two where the species differ in dewlap color, one where the species share the same dewlap color, and another where pale dewlapped A. brevirostris co-occurs with two A. distichus subspecies (one with a similarly pale dewlap and the other with an orange dewlap).

In general, we found that A. distichus and A. brevirostris looked like “good species,” with strong genetic differentiation and little evidence of hybridization, even at a site where they share the same dewlap color. This suggests that dewlap color differences are not associated with genetic differentiation in a manner one might expect if dewlaps were involved in the speciation process or in maintaining species boundaries. However, at the site where A. brevirostris co-occurs with two A. distichus subspecies with both similar and dissimilar dewlap colors, we found some evidence of hybridization and the species were not as highly genetically differentiated. This discrepancy suggests that site-specific factors could be influencing the dewlap’s role in speciation or maintaining species boundaries. For example, as Leo Fleishman’s and Manuel Leal’s work has shown (e.g. 1, 23), the dewlap’s effectiveness as a signal is dependent on the light environment. Further understanding about the environmental differences among our study sites, how species utilize the available light microhabitats within each site, and how the dewlap looks to anoles at each site could provide more insight into our findings.

On the other hand, perhaps we need to be looking beyond the dewlap and focusing instead on whole signaling displays. Anole behavioral displays can also be strikingly different among species (e.g. 1) and may instead be the key to understanding species diversification in Greater Antillean anoles.

Dewlap Color, Gene Flow, Habitat Specialization, and Speciation: A Tale of Two Contact Zones

Dewlap variation in Anolis distichus in Hispaniola. The photos at the bottom show the change in dewlap color along the two transects in the recent study by Ng and Glor.

Despite all of the research on anole evolution conducted in the last 40 years, one important question still eludes us: how does speciation in anoles occur? This, of course, is of fundamental importance, because the great species richness of these lizards implies that speciation has run rampant in this group. So, we’d like to know why.

We don’t know much about speciation in anoles, but we do know a little. First, it is thought that the dewlap plays an important role. Sympatric anole species almost never have identical dewlaps, and experimental and observational evidence suggests that anoles use their dewlaps for species-recognition. Hence, understanding anole speciation may, to a significant extent, reduce to understanding the factors that cause populations to evolve differences in their dewlaps.

A different perspective on anole speciation relates to the classic question of whether allopatry is necessary or whether, as suggested by many recent studies, natural selection driving differentiation—whether in allopatry or not—is a more important stimulus to genetic differentiation. Recent work in the Lesser Antilles by Thorpe and colleagues has argued that environmental differences are the primary drivers of genetic differentiation within anoles, a result also suggested by Leal and Fleishman’s studies on A. cristatellus in Puerto Rico.

In this light, perhaps the most enigmatic anole is Anolis distichus of Hispaniola.

Powered by WordPress & Theme by Anders Norén