Tag: niche

SICB 2020: Invasive and Native Anoles Have Different Dietary Niches

Chelsea Connor presenting her research at SICB 2020

Invasive species can often compete for resources with native species, which can have a negative impact on the community. This is an especially common occurrence when it comes to the diet of these competing species. It is important to investigate the diet of both the invader and the native species in order to determine whether this competition is present and if it will cause negative effects in the future.

Chelsea Connor grew up on the island of Dominica. She is currently an undergraduate student at Midwestern State University in Wichita Falls, Texas in the lab of Dr. Charles M. Watson. Her research addresses the dietary niche overlap of native and invasive species on her home island of Dominica. For this research, Chelsea and another undergraduate student, Destiny Zinn captured and collected feces from Anolis oculatus (a native species) and Anolis cristatellus (an invasive species) on Dominica. They successfully extracted and amplified a region of the cytochrome oxidase I gene from 44 samples. Then they ligated the PCR products and transformed them into E. coli to grow on a plate. After this, they sequenced the resulting clones and placed them into Molecular Taxonomic Operational Units, which were matched using the databases BOLD and GenBank with the help of Daniella Biffi and Dr. Dean Williams at Texas Christian University. They calculated the similarity of diets using the Sørenson coefficient.

Chelsea and her collaborators found a shockingly low degree of dietary overlap, discovering that these two species of anoles on Dominica consume different arthropod prey. They identified 40 prey species in this experiment, and only 4 species were contained in the diet of both the native and invasive anoles. Chelsea emphasizes that there may be dietary niche partitioning, which could explain how the two species are able to coexist across the island and avoid competition.

JMIH 2018: Brown Anoles Have Broader Diets Where They Co-occur with Other Anoles

A brown anole (Anolis sagrei) surveys its domain.

Trophic ecology deals with questions about the ways in which organisms acquire energy and how that process interacts with the communities and ecosystems surrounding them. Anole-focused research has played a strong role in our understanding of trophic ecology and ideas abut how communities come together and evolve, particularly in papers by Schoener, Roughgarden, and Lister. However, many trophic ecology studies have focused on specific communities or locations and haven’t dealt with how the ecology of one focal species varies across space and as a function of the presence of other close competitors.

Sean Giery, a post-doc at the University of Connecticut, in collaboration with James Stroud, a post-doc at Washington University in St. Louis, worked to address this gap in our knowledge by studying how the trophic ecology of the brown anole, Anolis sagrei, varies across its range. Brown anoles are voracious predators of insects, known to chow down on a diverse range of arthropods, including some of surprising size. Since the brown anole is also a prodigious invader, it occupies habitats with a variety of potential competitors, including locations with few competitors. Sean and James leveraged this situation to their advantage by compiling stomach content data from previously published papers (including a follow-up on Lister’s paper above). They also added their own sampling, including in Southern Florida, the Bahamas, and Hawaii…tough work! Sean and James then used the articles themselves, field guides, and citizen science sources like iNaturalist to determine the presence of other species which might compete with the brown anole, including other anoles and diurnal, insectivorous lizards.

Sean and James assembled an impressive database of the diet of A. sagrei.

They found that as community richness increases, the dietary niche of A. sagrei actually becomes broader, the opposite of the direction predicted by theories of ecological release. Additionally, average niche overlap between individual anoles declines as community richness increases. When only brown anoles are present in a community, individuals are highly similar in the types and proportions of what they eat, another finding which runs counter to models of how niche breadth should vary when a species is released from interspecific competition. Sean concluded his talk by suggesting that interference competition may be more important than generally recognized and soliciting suggestions for ways to continue looking at this impressive dataset. We’ll look forward to reading the paper!

Powered by WordPress & Theme by Anders Norén