Tag: JMIH2018

JMIH 2018: Do Ecomorphs and Parasites Coevolve?

Spencer Asperilla presenting his poster, “A Biodiversity Survey of Parasites from Anolis Lizards on Andros Island, Bahamas”, at the 2018 Joint Meeting of Ichthyologists and Herpetologists (JMIH).

Anolis species inhabiting the Caribbean provide a great example of adaptive radiation and convergent evolution in ecology, morphology, and behavior. Adaptation, diversification, and specialization to a particular microhabitat and dietary resource, created a great diversity among anoles. But what about their parasite assemblages? Andros Island in the Bahamas is the fifth largest island in the Caribbean Archipelago. However, it is still unclear if the parasite fauna hosted by Anolis lizards show similar evolutionary pathways.

In 2016, after an amazing experience studying abroad at ForFar Field Station on Andros Island, Spencer Asperilla and Katie Brittain joined the Langford Lab at Florida Southern College. Spencer and Katie were interested in documenting parasite species present in Bahamian Anolis lizards to determine if these are specialists or generalists among ecomorphs and identify if parasite populations vary seasonally. They conducted parasite biodiversity surveys on three sites on Andros Island, which involved capturing lizards and collecting blood smears and fecal matter. Specimens and samples were transported to Florida Southern College where they were processed and analyzed for parasites.

Spencer and collaborators found that parasitic infection rate was highest during the Summer (66.66%), and lowest during the Spring (60.56%); however these differences were not significant. Climate variables, such as mean daily temperature and precipitation, were evaluated, but no seasonal pattern could be determined for parasite infections in Bahamian lizards. As for parasite diversity, Brown Anole (Anolis sagrei; trunk-ground ecomorph) lizards had most species of parasites present, while A. angusticeps (twig ecomorph), A. distichus (Bark Anole; trunk ecomorph), and A. smaragdinus (Green Anole; trunk-crown ecomorph) had lower species diversity. The authors suggest these differences are related to the biology of the different ecomorphs. Trunk-ground anoles, such as A. sagrei, might be more susceptible to parasite infection by descending to the ground to capture prey or interact with a conspecific, whereas the other ecomorphs remain higher up in the tree. Ground-dwelling insects may serve as intermediate hosts for parasites found in trunk-ground anoles. Spencer and collaborators propose that habitat use, as well as dietary composition, serve as an ecological explanation for parasite distribution among ecomorphs.

The big question remains unanswered: have parasite species coevolved with specific lizard hosts? The Langford Lab continues identifying parasites species to assess the diversity, host-specificity and infection patterns of Bahamian Anolis lizards. Spencer wants to resume this project as part of his master’s thesis and he looks forward to traveling back to Andros Island to collect additional samples.

JMIH 2018: Does the Bluefields Anole (A. opalinus) Contain a Cryptic Species?

Kiyomi Johnson (L) and Marina Carbi (R) presenting their poster, “Speciation and Phylogeography of Anolis opalinus on Jamaica,” at JMIH 2018.

Caribbean anoles have been studied extensively, with researchers examining their evolution, ecology, physiology, morphology, and behavior in many different contexts. In some respects, they are one of the best known groups of organisms in the world. But are there still unique species “hidden” within the diversity of anoles we already know? Some papers suggest just that. In 2002, Jackman et al. examined the mitochondrial DNA of Jamaican anoles and found evidence that several species contained deeply diverged clades, indicating the potential presence of cryptic species.

Enter Marina Carbi and Kiyomi Johnson, two public high school students with a drive to dig into the biological sciences and a budding curiosity about all things Anolis. Ms. Carbi, a recent high school graduate, and Ms. Johnson, a rising senior at Fiorello H. LaGuardia public high school, began an internship specifically for high school students at the American Museum of Natural History. Working with Dr. Ed Myers, they set out to investigate the phylogenetic diversity in A. opalinus, the Bluefields anole, by sequencing a combination of mitochondrial and nuclear DNA from a series of 22 specimens of Jamaican anoles.

Mss. Carbi and Johnson found that both the mitochondrial data and combined species tree support the existence of a cryptic species within what is currently considered A. opalinus. Populations of the Bluefields anole found in the Blue Mountains area are monophyletic and sister to A. valencienni, indicating a potentially deep divergence from A. opalinus. Todd Jackman, whose initial work inspired this research, dropped by to check out Kiyomi and Marina’s follow up to his paper and was impressed. “Hopefully, they can go to Jamaica themselves,” Todd remarked, before adding as an aside, “I’m glad that their results match ours.”

The authors presented strong evidence that A. opalinus contains a cryptic species. Pic via Twitter.

Looking forward, Ms. Carbi has plans to attend Cornell University in the future, while Ms. Johnson is completing her high school degree. Both expressed interest in continuing to work in biology, with Ms. Carbi noting that she was excited to have had the opportunity to interact with researchers from Cornell at JMIH. The Society for the Study of Amphibians and Reptiles provided support for Mss. Johnson and Carbi to attend the meeting. More extensive sequencing is ongoing in order to further elucidate the phylogeography of what is currently known as Anolis opalinus. Stay tuned!

 

 

Powered by WordPress & Theme by Anders Norén