Anole Field Research Blogs

Great photos on Adventures Down South

Where do anoles poop? Will they chase laser points? Find out on Casey Gilman’s new blog on her Florida field research, Adventures Down South.  Meanwhile, Chipojolab keeps the world abreast of goings-on in the Leal Lab. Most recently–Leal back in the Bahamas and multiple lab members cavorting in Puerto Rico! And Ambika Kamath’s afoot with her field crew in Gainesville, dodging frisbees and fire ants in quest of the wily festive anole. Finally, at Lizard and Friends, Michele Johnson talks about Puerto Rican anoles that are biting off more than they can chew. Or are they?

Do you have a blog on your research? If so, let us know!

Field laboratory in Puerto Rico. Read all about it in Chipojolab.

JMIH 2014: Performance Loss Does Not Deter Anoles from Using Artificial Perches

Andrew Battles from the Kolbe Lab gave a talk at JMIH presenting data on performance-habitat relationships comparing lizard performance on rough and smooth surfaces. The data were collected on Guana Island in the British Virgin Islands using Anolis cristatellus and A. stratulus as study species. Andrew and his advisor, Jason Kolbe, were interested in whether lizards perform differently on artificial and natural surfaces.

Major differences between natural and urban habitas

Major differences between natural and artificial habitats

They used three different running tracks (37°-incline rough track,  90°-incline rough track, 90°-incline smooth track), assuming that artificial surfaces are smoother than natural ones. The rough tracks consisted of a board covered in window screen and the smooth track was a plain 2-by-4 board. They used a high-speed camera to measure maximum velocity, how often a lizard paused during the run and how often it slipped. While both species ran significantly slower, paused and slipped more often on the smooth surface, A. cristatellus performed even worse than A. stratulus. Andrew and Jason then conduced a field survey to test whether lizards in a human-modified habitat use both artificial and natural perches. In addition, they rated roughness of natural and artificial perches. When both types of perches were available, lizards used artificial perches more often than natural ones.

In human-modified habitats, lizards were found mostly on artificial perches

In human-modified habitats, lizards were found mostly on artificial perches

This is surprising, because artificial perches are significantly smoother than natural ones and lizards perform worse on smooth surfaces. Possible explanations are that other factors such as food availability and/ or predation may drive habitat selection on artificial substrates.

JMIH 2014: Effect of Moisture and Substrate on Egg Water Uptake and Phenotypes of Hatchling Lizards (Anolis sagrei)

Following up on yesterday’s post, more research results from the Warner Lab on egg incubation were presented at JMIH. Corey Cates, a masters student from the Warner Lab, presented his data on developmental plasticity in Anolis sagrei. He used an experimental approach to test whether lizards incubated under dry conditions would survive better in a dry habitat than lizards incubated under moist conditions and vice versa. The idea for the study came from the observation that habitat and substrate differs among small islands in Florida. Some islands are scarcely vegetated and have dry substrate consisting of broken shells. Other islands are more densely vegetated and have dark soil that contains organic matter.

Corey collected 128 breeding pairs from four islands and incubated the eggs using the two different substrates. He also tested two different moisture conditions (wet and dry). He found that lizards incubated under wet conditions hatch on average 4-5 days later and hatchlings were significantly heavier than those incubated under dry conditions. In addition, lizards hatch significantly later when incubated in the soil substrate, which retains moisture longer than the broken shells. Corey further tested whether lizards raised under dry conditions have higher desiccation tolerance than lizards from wet conditions. He measured body mass before and after keeping the lizards in a desiccation chamber. Lizards that had developed under wet conditions lost 5% more mass than lizards developed under dry conditions.

Hatchlings incubated under wet conditions lost significantly more mass than hatchlings incubated under dry conditions.

Hatchlings incubated under wet conditions lost significantly more mass than hatchlings incubated under dry conditions.

This suggests, that plastic responses to different developmental conditions have an effect on physiological traits that might increase survival in a specific habitat. To test this, Corey then released the hatchlings on four experimental islands and measured hatchling survival using a recapture method.

Significantly more hatchlings survived in the open, arid habitat when eggs were incubated under dry conditions.

Significantly more hatchlings survived in the open, arid habitat when eggs were incubated under dry conditions.

He found that significantly more hatchlings survived in open, arid habitats when eggs were incubated under dry conditions. No effect of incubation condition on hatchling survival was found in the shaded, moist habitat.

JMIH 2014: Effects of Natural Incubation Temperatures on Development and Phenotypes of the Lizard Anolis sagrei

Yesterday at JMIH, Phillip Pearson reported results from work conducted with his thesis adviser at the University of Alabama, Birmingham Daniel Warner. Pearson investigated the impact of incubation environment on the  brown anole (Anolis sagrei), and the effects of incubation in shaded versus open habitat and early versus late season in particular. Pearson reported several significant differences between the eggs (and resulting hatchlings) incubated under these two conditions. He specifically reported longer incubation intervals under early season and shaded conditions, smaller hatchling size under shaded conditions and better performance of hatchlings at 1 and 3 weeks for the eggs incubated under the late season regime. Performance of hatchlings was quantified as their speed and the number of times they stopped during a performance trial. This work is the latest in a string of interesting studies from the Warner Lab on the impact of incubation conditions on anoles. I was going to provide links to previous posts on Anole Annals about the Warner Lab‘s work, but there are so many that I’ll just suggest that you type “Warner” into the search box at the top of the page and enjoy for yourself.

JMIH 2014: Who’s There? The Importance of Familiarity in Discrimination of Avian Calls by the Brown Anole (Anolis sagrei)

brown_anole_auditoryI saw two talks on brown anoles in the same session this afternoon at JMIH. The second reported on the response of brown anoles (A. sagrei) to potential avian predators. Lisa Cantwell presented results of her work with Joe Altobelli and Sandy Echternacht on the behavior of brown anoles exposed to the calls of potential avian predators in a controlled laboratory environment. Cantwell has previously reported that anoles respond more strongly to the calls of predator birds than to white noise or non-predator birds (see also prior work on A. cristatellus in response to predator and non-predatory birds). Cantwell played the calls of four bird species to captive brown anoles and monitored their reactions. The four birds in the study included one species that co-occurs with, and preys upon, A. sagrei: the American Kestrel. The other birds were species that do not co-occur with A. sagrei: the White-rumped Falcon (gotta love the ornithologists and their descriptive common names), the Shikra, and the Lesser Kestrel (this name seems kind of demeaning and should probably be changed). Cantwell tested if the anoles responded more to the predator that they or their ancestors have likely encountered in nature than to the calls of predators that they or their ancestors have likely never encountered. The types of reactions that were viewed as indicative of increased vigilance in the lizards included head shifts, eye opening, and movement around the enclosure. Although Cantwell found that the lizards responded to all of the various bird stimuli at a similar level to white noise, she hypothesized that this resulted from hyper-vigilance in a contrived laboratory environment. She also reported that the lizards responded significantly more quickly to the American Kestrel and that they remained vigilant for twice as long in response to this sympatric predator than they did in response to the non-sympatric predators.

JMIH 2014: Using Biological Invasions to Model the Fundamental Niche: A Case Study Using the Cuban Brown Anole (Anolis sagrei)

brown_anole_nicheI caught my first anole talk at this year’s Joint Meeting of Ichthyologists and Herpetologists in Chattanooga, Tennessee. James Stroud presented the results of work with Ken Feeley on modeling the niche of the brown anole (Anolis sagrei). Using data acquired from GBIF, Stroud showed that the environmental conditions experienced by brown anoles in their introduced range are outside of the environmental conditions experienced by brown anoles on Cuba. Stroud discussed how these data from the invasive range of the brown anole might be used to develop a more accurate model of this species’ fundamental niche. This is a work in progress.

There Is Grandeur in This View of Reptilian Genitalia

There is considerable variation in phallus morphology among the major groups of amniotes (phallus used herein to be inclusive of both the penis and clitoris). Just for starters, while most clades – including mammals, birds, turtles, and crocodilians – have a single midline phallus, squamates have paired hemiphalluses. Although herpetologists have long appreciated morphological variation in the hemipenis for its systematic value, understanding the nuances of anatomical homology, homoplasy, and novelty at this larger scale has not been as widely addressed. Recently, the Cohn lab of the University of Florida (of which I am now a member) undertook this challenge from a developmental perspective, studying development of external genitalia in representatives of each reptilian clade: the ball python (Python regius), the pond slider (Trachemys scripta), three duck species, the American alligator (Alligator mississippiensis), and who else, but the green anole (Anolis carolinensis). A synthetic review of the complete series will have to wait for another post, but reprints of each paper are available on the lab’s website to hold over the most curious. But because of the growing interest in anole nether regions, I will briefly highlight the recent findings regarding hemiphallus development in the green anole.

Fig. 2 of Gredler et al. illustrating the development of paired genital and cloacal swellings.

Fig. 2 of Gredler et al. illustrating the development of paired genital and cloacal swellings.

The Wade lab has previously shown that both male and female green anoles develop similar hemiphalluses during the early stages of genital morphogenesis, which then later differentiate into sex-specific reproductive structures. Building upon this observation, Gredler et al. described the embryology of the green anole hemiphallus from the earliest stages of morphogenesis through sexual differentiation. Hemiphallus development begins around the time of oviposition when three sets of paired swellings appear between the cloaca and the developing hindlimb bud, reminiscent of what is observed in other amniote clades. These swellings expand and meet at the midline to form the external lips of the cloaca or remain lateral to the cloaca and mature into the hemiphalluses. Following morphogenesis, the male hemipenis continues to elongate as it forms its distinctive lobes and sulcus spermaticus while the female hemiclitores gradually regress into the cloaca. Further details of the developmental anatomy of internal reproductive structures and gene expression patterns of several key molecules associated with genital morphogenesis are described in the paper.

Fig. 4 of Gredler et al. illustrating sexual differentiation of the hemiphalluses

Fig. 4 of Gredler et al. illustrating sexual differentiation of the hemiphalluses. Red arrow highlights the formation of the sulcus spermaticus.

Although there is some variation among squamates in the relative timing of the emergence and fusion of the paired swellings associated with hemiphallus development, these results are largely consistent with classical embryological descriptions of squamate genitalia (summarized by Raynaud and Pieu in Biology of the Reptila volume 15). But the revival of this body of literature in a comparative and molecular context brings new research questions to our collective table. As discussed by Gredler et al., the seemingly modular relationship between the genital swellings, cloaca, and limb buds may be particularly interesting in the context of repeated body elongation and limb loss among squamates. Better understanding of the relationship between cloacal and phallus development may also shed new light on the mechanisms of reproductive isolation, the coevolution of male and female reproductive organs, and evolving patterns of sexual conflict. Furthermore, there remain open many mechanistic questions regarding the molecular patterning of the hemiphalluses and which processes are hormone dependent that can now be more thoroughly addressed using the newly available sex-specific molecular markers. Considering the growing literature on hemipenis variation and expanding access to genomic resources in Anolis, these may be particularly fruitful areas for future investigation.


More Research on Female Back Pattern Polymorphisms

Variation in the back patterns of Anolis sagrei in the Bahamas. From Calsbeek and Cox (2010).

The confusing conundrum of the polymorphic females continues. We’ve written about this phenomenon in previous posts [e.g., 1,2]. Within and between populations, female back patterns vary, including lines, stripes, diamonds, blotches, and nothing at all. What is the significance of this variation? In some cases, but not others, females with different patterns use different microhabitats–higher, wider, etc.

The latest contribution features work on the Bahamian island of Eleuthera, where three patterns co-occur. Writing in Herpetologica, Les et al. add a new twist–back pattern variants differ in hindlimb length. But they don’t differ in sprint speed (which is weakly correlated to body size and relative limb length) or to perch diamter. But they do differ in perch height. Another brick in the wall of female pattern polymorphism, but it doesn’t make the picture any clearer.

Here’s the abstract:

The Brown Anole (Anolis sagrei) is a polymorphic species, with females often exhibiting one of three distinct pattern morphs. Efforts to correlate female-limited pattern polymorphism in anoles to ecological or physiological factors have largely been unsuccessful, with such correlations being either inconsistent among species or among populations of a single species. To test the hypothesis that morph types would differ in their response to putative predators, we observed escape behavior in 84 female A. sagrei from Cape Eleuthera (Eleuthera, Bahamas) and tested 103 females for sprint speed. We found differences between morph types in hindlimb span and perch height. Differences in sprint speed were not significant, nor did morphs differ in escape responses. We suggest further studies to determine whether differences between morphs in hindlimb span are genetic or plastic, and, if plastic, what factor might be responsible. We conclude that perching at different heights could be selectively advantageous for different morph types, and that differences among individuals in sprint speed are largely consequences of hindlimb length. Because morphs in this population did not differ in escape responses, we suggest that different dorsal patterns are not linked to specific behaviors that could reduce detection by a potential predator.


Everything You Ever Wanted to Know about the Beautiful Anolis smaragdinus


The Catalogue of American Amphibians and Reptiles, produced by the Society for the Study of Amphibians and Reptiles, are “Loose-leaf accounts of taxa (measuring 8.5 x 11 inches) prepared by specialists, including synonymy, definition, description, distribution map, and comprehensive list of literature for each taxon. Covers amphibians and Reptiles of the entire Western Hemisphere. Individual accounts are not sold separately, except where indicated.”

CAAR entries are now freely available online; there are 32 anole species accounts. The latest is by Les and Powell and is a very nice CAAR entry for the lovely Anolis smaragdinus.

Anoles Make Guest Appearance on John Oliver Show


Admittedly, they were in a piece on space geckos, but you gotta’ take fame where you can get it. Catch the clip here before Youtube takes it down.

And note that this is not the first time anoles have been mistaken for geckos by journalists. Let’s not forget the segment on the Sunday Morning CBS show, a misstep for which AA  led the blogosphere in breaking the news and eventually received a mea culpa from CBS.

A Dearth Of Anoles At ISBE And ABS

August 2014 is a good month for behavioural biologists in North America: at the start of the month, the International Society for Behavioral Ecology and the Animal Behavior Society are holding conferences in quick succession in New York City and Princeton respectively. However, Anolis lizards are pitifully underrepresented at these meetings: of the hundreds of talks at these two meetings, a total of zero–yes, zero–are about anoles. This is a tad surprising–plenty of people study the behaviour of anoles, and I was expecting some presentations at these meetings. I’ll be at ABS talking about Sitana, and would love to meet other anole behaviour enthusiasts, so please let me know in the comments below if you’ll be there.

That said, lizards aren’t too badly represented at these meetings: there will be talks or posters on DracoPsammophilus, Phrynocephalus, Sceloporus, Crotaphytus,  Podarcis and Tupinambis. I’ll be blogging about the lizard presentations from ABS, so stay tuned for a behavioural bonanza!

The wonderful Phrynocephalus mystaceus. Photo by Antoshin Konstantin from Wikimedia.

The wonderful Phrynocephalus mystaceus. Photo by Antoshin Konstantin from Wikimedia.

New Special Issue on Morphology and Evolution of Lizards

anatomical record cover

Juan Daza asks: Can you identify this lizard?

He continues:

If you have no idea, it’s not because it’s not an Anolis; in fact, this is an imaginary lizard that was reconstructed based on the remains of a 110 my old fossil from the Gobi Desert and a mosaic of features from different living geckos such as Agamura persica, Pachydactylus rangeiTeratoscincus przewalskii, Hemidactylus turcicus, and Coleonyx variegatus (and check the dromeosaurids roosting at twilight).  This digital illustration drawn by Stephanie Abramowicz is the cover of a March Special Issue from the Anatomical Record: New Advances In Morphology and Evolution of Living and Extinct Squamates [freely available at:].

The idea of a volume like this started with James D. Gardner and Randall L. Nydam. They wanted to put a collection of papers from the Paleo-session of the past World Congress in Vancouver. Instead, they ended up editing another multi-authored volume entitled: Mesozoic and Cenozoic lissamphibian and squamate assemblages of Laurasia (Palaeobiodiversity and Palaeoenvironments, 93(4), Special Issue).

This volume took a different approach, and we (Scott Miller and I) put together herpetologists and paleontologists from around the world in a volume to present new ideas about morphology and evolution of squamates. This volume is a collection of 18 papers about paleontology, functional morphology, and gross anatomy of lizards and snakes, and includes recent findings from researches from 12 countries (USA, Canada, Colombia, Brazil, Argentina, Spain, France, Italy, Germany, Slovakia, South Africa, and New Zealand).

So please feel free to browse this volume that includes original research papers about the fossil record of lizards and snakes, anatomy of the chameleon’s atlantoaxial complex, pedal grasping capabilities, and pectoral girdle anatomy of anoles, fossil record of the Gekkota, cranial joints of squamates, hemipeneal morphology, brille formation, cranial joints, ancestral morphology and niche modeling of rhineurids, Anguimorpha, and the jaw musculature, and gut morphology of snakes. I hope you find this stimulating and pick morphology today, for a change.

Table of Contents:

The Anatomical Record is Alive With Leapin’ Lizards and Slitherin’ Snakes (pages 337–340)
Kurt H. Albertine and Scott C. Miller

What’s So Special About Squamates? (pages 341–343)
Juan D. Daza and Scott C. Miller

Not Enough Skeletons in the Closet: Collections-Based Anatomical Research in an Age of Conservation Conscience (pages 344–348)
Christopher J. Bell and Jim I. Mead

An Overview of the South American Fossil Squamates (pages 349–368)
Adriana María Albino and Santiago Brizuela

The Atlas-Axis Complex in Chamaeleonids (Squamata: Chamaeleonidae), with Description of a New Anatomical Structure of the Skull (pages 369–396)
Andrej Čerňanský, Renaud Boistel, Vincent Fernandez, Paul Tafforeau, Le Noir Nicolas and Anthony Herrel

Anatomy of the Crus and Pes of Neotropical Iguanian Lizards in Relation to Habitat use and Digitally Based Grasping Capabilities (pages 397–409)
Virginia Abdala, María José Tulli, Anthony P. Russell, George L. Powell and Félix B. Cruz

Geometric Morphometric Analysis of the Breast-Shoulder Apparatus of Lizards: A Test Case Using Jamaican Anoles (Squamata: Dactyloidae) (pages 410–432)
Alexander Tinius and Anthony Patrick Russell

On the Fossil Record of the Gekkota (pages 433–462)
Juan D. Daza, Aaron M. Bauer and Eric D. Snively

To Move or Not to Move: Cranial Joints in European Gekkotans and Lacertids, an Osteological and Histological Perspective (pages 463–472)
Marcello Mezzasalma, Nicola Maio and Fabio Maria Guarino

Relict Endemism of Extant Rhineuridae (Amphisbaenia): Testing for Phylogenetic Niche Conservatism in the Fossil Record (pages 473–481)
Christy A. Hipsley and Johannes Müller

Are Hemipenial Spines Related to Limb Reduction? A Spiny Discussion Focused on Gymnophthalmid Lizards (Squamata: Gymnophthalmidae) (pages 482–495)
Pedro M. Sales Nunes, Felipe F. Curcio, Juliana G. Roscito and Miguel T. Rodrigues

Through the Looking Glass: The Spectacle in Gymnophthalmid Lizards (pages 496–504)Ricardo Arturo Guerra-Fuentes, Juliana G. Roscito, Pedro M. Sales Nunes, Priscilla Rachel Oliveira-Bastos, Marta Maria Antoniazzi, Jared Carlos and Miguel Trefaut Rodrigues

A New Miniaturized Lizard From the Late Eocene of France and Spain (pages 505–515)
Arnau Bolet and Marc Augé

Comparative Anatomy of the Lower Jaw and Dentition of Pseudopus apodus and the Interrelationships of Species of Subfamily Anguinae (Anguimorpha, Anguidae) (pages 516–544)
Jozef Klembara, Miroslav Hain and Karolína Dobiašová

Unusual Soft-Tissue Preservation of a Crocodile Lizard (Squamata, Shinisauria) From the Green River Formation (Eocene) and Shinisaur Relationships (pages 545–559)
Jack L. Conrad, Jason J. Head and Matthew T. Carrano

Postnatal Development of the Skull of Dinilysia patagonica (Squamata-Stem Serpentes) (pages 560–573)
Agustín Scanferla and Bhart-Anjan S. Bhullar

Homology of the Jaw Muscles in Lizards and Snakes—A Solution from a Comparative Gnathostome Approach (pages 574–585)
Peter Johnston

A Model of the Anterior Esophagus in Snakes, with Functional and Developmental Implications (pages 586–598)
David Cundall, Cassandra Tuttman and Matthew Close

No Need for Sunscreen: Some Lizards Adjust UVB Exposure Depending on Vitamin D Intake

Gratuitous plug for a brand of sunscreen featuring a lizard.

Lizards not only sit in the sun to thermoregulate, but also to synthesize Vitamin D. It tends to reason, then, that the amount of basking might depend on the amount of Vitamin D in the diet. And so it does, at least in A. sagrei. But, not in the more shade-loving A. lineatopus. Read all about it in Gary Ferguson’s paper that appeared in the Journal of Herpetology at the end of last year.


In Jamaica, free-living male and female-sized Anolis sagrei are exposed to more natural ultraviolet-B (UVB) from sunlight than male and female-sized Anolis lineatopus. In the laboratory, we tested predictions derived from the hypothesis that Anolis possess a mechanism for behaviorally photo-regulating their exposure to UVB depending on their dietary intake of vitamin D3. Anolis sagrei voluntarily exposed themselves more frequently to visible and UVB light and received higher doses of UVB in an artificial light gradient when fed a low vitamin D3 diet for 6 weeks than when subsequently fed a high dietary vitamin D3 diet for 6 weeks. When we returned the anole’s diet to the low vitamin D3 regimen for a third 6-week period, UVB exposure remained lower than in the first 6-week period. This suggests an initial UV photoregulatory adjustment to high dietary vitamin-D3 but a slow return to greater reliance on UVB-induced endogenous vitamin D3 production. Conversely, while exposing themselves to UVB with similar frequency and doses as A. sagrei over the course of the 18-week experiment, A. lineatopus did not show the same decreased attraction to visible and UVB light in response to increased dietary vitamin D3. The response of A. sagrei in the laboratory to visible light without UVB was similar to their response to visible light with UVB. Therefore, the anoles appeared to be responding primarily to visible light. Anolis lineatopus may be unable to use dietary vitamin D3 to restore low vitamin D status.


HHMI Unveils Lizard Classroom Exercises to Teach Evolutionary Concepts


The Howard Hughes Medical Institute earlier this year introduced a short film on anoles for use in teaching principles of evolution to high school and science biology classes. Now they’ve come up with a fabulous set of online class exercises to be used in conjunction with the film, the Lizard Evolution Virtual Lab!

I have to say, the exercises are fantastic! The exercises, which include data collection and analysis, include how to study phylogeny, natural selection and adaptation. Here’s how they describe it:

The virtual lab includes four modules that investigate different concepts in evolutionary biology, including adaptation, convergent evolution, phylogenetic analysis, reproductive isolation, and speciation. Each module involves data collection, calculations, analysis and answering questions. The “Educators” tab includes lists of key concepts and learning objectives and detailed suggestions for incorporating the lab in your instruction.

It is appropriate for students in high school biology and environmental science classes, and undergraduate biology, ecology, environmental science courses. The focus on observation, measurement, and experimental methods makes the lab a good fit for addressing “science as a process” or “nature of science” aspects of the curriculum. The emphasis on the collection, analysis, and graphing of data, connects to the mathematical dimension of biology and general goals of STEM integration.

Key Concepts:

  • An adaptation is a structure or function that confers greater ability to survive and reproduce in a particular environment. (Modules 1 and 3)
  • DNA sequence comparisons among different populations and species allow scientists to determine how distantly related different species are and how long ago they split from a common ancestor. (Module 2)
  • Different species can independently evolve similar traits by adapting to similar environments or ecological niches in a phenomenon known as convergent evolution. (Module 2)
  • The biological definition of a species is a group of interbreeding individuals that are reproductively, and thus genetically, isolated from other groups. (Module 4)
  • When two groups within one species become geographically isolated—separated by a physical barrier, such as a river, canyon, or mountain range—genetic changes in one group will not be shared with members of the other, and vice versa. Over many generations, the two groups diverge as their traits change in different ways. (Modules 3 and 4)
  • For two groups to become distinct species, traits must change in ways that will keep members of each group reproductively isolated—meaning that they will not mate or produce fertile offspring with members of the other group—even if they come to be in the same geographic location. (Module 4)
  • Graphing data is an important way to objectively document differences and similarities. It can make it easier to spot patterns that would otherwise be difficult to see in tables of measurements or direct observations. (Modules 1, 3, and 4)
  • Statistical tools provide a way to quantify variability in biological data and describe the degree of uncertainty in the results obtained using these data. (Modules 3 and 4)

Ongoing Research on Giant Blue Anoles and the A. equestris Species Complex

Photo by Luis Diaz.

The ninth most viewed page of Anole Annals of all time is dedicated to this beauty, a member of the Anolis equestris species complex. That post referred to a PDF version of a poster with photos of some reptiles and amphibians of Cuba. Luis Diaz, Curator of Herpetology at Museo Nacional de Historia Natural de Cuba, recently commented on the beautiful photo above that was in that poster and posted on AA:

I’m the author of two of the pictures you posted a long time ago on Anole Annals. At the moment the pdf you mentioned was published, only one subspecies of Blue Giant Anole existed (A. e. potior). Now populations in Cayo Coco (like the individual shown in the picture), are considered Anolis equestris cyaneus, not potior as mentioned in the referred photographic guide. We named Anolis equestris equestris the individual with a large black blotch on the neck (actually from Peralta, Zapata Swamp, a bit far away from Playa Larga), but it has the coloration of A. e. calceus. However, we have new genetic evidences (information obtained during a joined project with Antonio Cadiz, University of Havana, and Masakado Kawata from the University of Tohoku) for the taxonomic re-assessment of Cuban giant anole species and subspecies. We are working in a soon coming review of this group. I’m very interested in the photograph linked as: This is a really diverse and complicated group of anoles.

Dr. Luis M. Diaz
Curator of Herpetology
Museo Nacional de Historia Natural de Cuba