6.31 g). The large hook likely contributed to the death of this individual and we hypothesize the dipteran larvae and bush hook were likely artifacts of secondary ingestion.

This observation constitutes the first record of *A. mississippiensis* consuming *Pterygoplichthys* and the first account of *A. mississippiensis* food habits in Florida spring-fed rivers. Native to South America, *Pterygoplichthys* and other armored catfishes (Loricariidae) were introduced in Florida beginning in the 1950s and multiple species have become widely established in Florida freshwater ecosystems. In their native habitat, loricarid catfishes are preyed upon by *Caiman crocodilus* (Thorbjarnarson 1993. Herpetologica 49:108–117).

As part of an ongoing nonnative species removal effort, on 18 June 2009 a large *C. crocodilus* (approx. 154 cm total length) was collected at Homestead Air Reserve Base, Miami-Dade C., Florida (25.489166°N, 80.371666°W; WGS 84). Subsequent dissection of the specimen revealed stomach contents consisting of a single food item, a *Cardisoma guanhumi* (Blue Land Crab). This documents the first instance of *C. crocodilus* preying upon *Cardisoma guanhumi*. Crabs are a well-known dietary component in their native range, although they are typically fully aquatic freshwater species of the family Trichodactylidae (Thorbjarnarson 1993. Herpetologica, 49:108–117; Silveira and Magnusson 1999. J. Herpetol. 33:181–192). In contrast, *Cardisoma guanhumi* is a largely terrestrial species that migrates to saline aquatic habitats during the spawning season, which occurs from late June through early December (Gifford 1962. Biol. Bull. 123:207–223). Considering the seasonality of this observation, it is possible that this predation event occurred in an aquatic situation during a nocturnal spawning event.

We observed a total of five *A. aquaticus* individuals for up to 16 nights each between 2200 h and 0400 h during the period of 5–28 March 2015, near a drainage area that forms a small creek at the Las Cruces Biological Station, Puntarenas, Costa Rica (8.785475°N, 82.96096°W, WGS84; ca. 1100 m elev.). The first individual, an adult, was sleeping on a trunk ca. 3 m above the water with its body largely covered by moss and oriented parallel to the long axis of the trunk with its head pointing up. We found it sleeping in that same area (within 20 cm of the original position) on 12 of the 16 observed nights, including periods of five and six consecutive nights. (It may have been present for longer consecutive periods but we did not make observations for more than seven consecutive nights.) A second adult lizard slept perched on a horizontal leaf on the side of the drainage area ca. 1 m above the water for 12 of the first 14 nights of observation; on one of these nights it may have moved across the water to a fern ca. 2 m from its original position (because we did not individually mark the lizards we cannot say for certain). On the second to last night of observation half of the perch leaf had been removed, leaving an area that was likely too small for the lizard to continue using; we did not observe this lizard again. Two adult lizards slept on adjacent fern fronds that extended over the water, ca. 1 m above the water and ca. 20 cm from one another. We did not, however, observe both lizards together until the ninth night. The first lizard was present on its original branch for 14 of the 16 nights. On the other two nights (both during the first eight nights) we did not observe a lizard sleeping on the original branch but did observe one sleeping on the adjacent branch and assumed that this was the same lizard that had moved fronds. It is possible, however, that these sightings were actually of the second lizard. We observed both lizards together for a total of four nights; after the appearance of the second lizard, we never again observed a lizard only on the second branch.

Finally, on the ninth night of observation we discovered a juvenile individual sleeping on a leaf ca. 10 cm above rocks that normally form part of a nearby creek (which was dry at the time of observation). This individual continued to use this leaf, as well as two adjacent leaves (within ca. 10 cm of the original leaf) for all eight nights of observation.

SQUAMATA — LIZARDS

ANOLIS AQUATICUS (*NOROPS AQUATICUS*) (Water Anole). **SLEEP SITE FIDELITY.** Although under-studied, sleep site selection and fidelity in anoles has emerged as a topic of interest, as sleeping habits may affect an organism’s ability to avoid predators and access key resources (Sigal et al. 2007. Behaviour 144:1033–1052). Arboreal lizards are hypothesized to be faithful to their sleep sites as suitable perches are presumably scarce in their territories, but anoles differ in their sleep site fidelity both among and within species (Clark and Gillingham 1990. Anim. Behav. 39:1138–1148; Sigal et al., op. cit.). Here we report for the first time, to our knowledge, data on sleep site fidelity in *Anolis aquaticus*, a stream-affiliated anole species that occurs in southwestern Costa Rica and Panama (Savage 2002. The Amphibians and Reptiles of Costa Rica: A Herpetofauna between Two Continents, between Two Seas. University of Chicago Press, Chicago, Illinois. 954 pp.).

Although under-studied, sleep site selection and fidelity in anoles has emerged as a topic of interest, as sleeping habits may affect an organism’s ability to avoid predators and access key resources (Sigal et al. 2007. Behaviour 144:1033–1052). Arboreal lizards are hypothesized to be faithful to their sleep sites as suitable perches are presumably scarce in their territories, but anoles differ in their sleep site fidelity both among and within species (Clark and Gillingham 1990. Anim. Behav. 39:1138–1148; Sigal et al., op. cit.). Here we report for the first time, to our knowledge, data on sleep site fidelity in *Anolis aquaticus*, a stream-affiliated anole species that occurs in southwestern Costa Rica and Panama (Savage 2002. The Amphibians and Reptiles of Costa Rica: A Herpetofauna between Two Continents, between Two Seas. University of Chicago Press, Chicago, Illinois. 954 pp.).
In each case, the lizard’s chosen perch showed characteristics of being protective—either because they were relatively flimsy leaves that would allow the lizards to detect the approach of predators or, in the case of the lizard sleeping under moss, because they obscured the lizard from view. Aquatic anoles jump into water to avoid predation when sufficiently disturbed, so the selection of sites near water is consistent with avoiding predation (Leal et al. 2002. Evolution 56:785–791). We did not, however, observe this behavior in these specific individuals; we attempted to minimize disturbance to the lizards and while lizards sometimes awoke when we surveyed them, they never moved. Overall, lizards were found in the same location on 55–100% (mean = 78.6%) of the nights we observed them, indicating that *A. aquaticus* show high fidelity to sleep sites, with some individual variation. Given each individual’s apparent preference for sleep sites near water and the dry conditions, it is possible that appropriate sleep sites were particularly scarce at this time of year, forcing individuals to be particularly faithful to their sleep sites, except when such sites are destroyed. Alternatively, lizards may save time or energy by re-utilizing sleeping sites, rather than searching for new sites.

HANNAH K. FRANK, Department of Biology, Stanford University, 393 Serra Mall, Stanford, California 94305, USA (e-mail: hkfrank@stanford.edu); **JONATHAN R. FLANDERS**, Department of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom.

ASPIDOSCELIS INORNATA (Trans Pecos Striped Whiptail). **PREDATION.** Due perhaps to the remoteness of the Trans Pecos region it occupies, very little natural history information is available for *Aspidoscelis inornata*. For example, our recent observations of two snake species (*Coluber flagellum* [Coachwhip] and *Sistrurus tergeminus edwardsii* [Western Massasauga]; Graham and Kelehear 2015. Herpetol. Rev. 46:107; Graham and Kelehear 2015. Herpetol. Rev. 46:267) feeding on *A. inornata*, are, to our knowledge, the first documented predators for this species. Here we contribute an additional observation of an avian predator of *A. inornata*. On 01 November 2014, 11.5 km SE of Valentine, Jeff Davis Co., Texas, USA (30.52166°N, 104.40198°W; WGS 84), we discovered a larder of 27 individual *A. inornata* impaled on barbed wire (Fig. 1) by *Lanius ludovicianus* (Loggerhead Shrike). We collected these lizards along both sides of a 1.6-km section of a paved farm road bordered by barbed wire fences. The lizards were in various stages of decomposition and dismemberment, ranging from detached heads to rear halves of abdomens and tails impaled on barbs; the general impression was that a shrike or shrikes frequently kill and feed upon these lizards in the area. To our knowledge this is the first documented instance of *L. ludovicianus* preying upon *A. inornata* (Clark 2011. Son. Herpetol. 24:20–22). A representative *A. inornata* was deposited in the James F. Scudder Vertebrate Collections at Sul Ross State University (SRSU 6659).

SEAN P. GRAHAM, Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, Texas 79830, USA (e-mail: sean.graham@sulross.edu); **CRYSTAL KELEHEAR**, Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama (e-mail: crystal.kelehear@hotmail.com).

ASPIDOSCELIS SEXLINEATA (Six-lined Racerunner). **TEMPORAL HABITAT USE.** The Six-lined Racerunner is a “species in greatest conservation need” in Minnesota at the northern edge of its extensive geographic range. Although it may be found in “lowland” habitats such as roadsides (Gossen and Cochran 2013. Herpetol. Rev. 44:686) and sand prairies, its occurrence on bluffs was noted by Holzinger (1913. In Curtiss-Wedge [ed.], The History of Winona County Minnesota, Vol. I, pp. 364–381. H. C. Cooper & Co., Chicago, Illinois). On bluffs, it is associated with open habitat high on south or southwest facing slopes (locally referred to as “goat prairies”), often near rock ledges where soft, eroding sandstone is capped by harder rock, and it is especially obvious in areas where patches of open sand occur downslope from the ledges. Data on racerunner use of rock ledges reported herein were obtained during monitoring of Timber Rattlesnakes (*Crotalus horridus*) with digital remote cameras in Houston Co., Minnesota, USA in 2007 (Cochran and Schmitt 2014. Herpetol. Rev. 45:700). We placed remote cameras beneath overhanging ledges (22 May–5 October) with cameras set beneath one end and pointed toward the opposite end. Cameras took photographs at 1h intervals in addition to responding to movement. At one ledge, substrate temperatures were recorded hourly (HOBO data logger) beneath the overhanging ledge and on the exposed ground surface approximately 2 m from the ledge. We also used incidental observations of *Aspidoscelis sexlineata* encountered during fieldwork by PAC on bluffs in Fillmore, Houston, Waba-sha, and Winona counties during the period 2000–2012 to define the seasonal and daily activity period in bluff habitat. Data resulted from surveys of 1–3 h duration during which all sightings of reptiles and amphibians were recorded; we included only data for bluffs where *A. sexlineata* was observed on at least one occasion (224 surveys). With few exceptions, individuals of *A. sexlineata* were encountered during activity in the open.

Cameras captured 33 images of *Aspidoscelis sexlineata* from late May through early September. It was not possible to determine how many individual lizards were photographed,