Tag: mainland anoles

#DidYouAnole – Anolis heterodermus


Photo: Wilmar Agudelo Sánchez, iNaturalist

It’s been a while since we’ve looked at an anole from South America, so why not go all the way over to an an anole that is probably at the highest elevation an anole species has ever been found: Anolis heterodermus, the Flat Andes anole!


Photo: Alejandro Lopez, iNaturalist

Anolis heterodermus lizards are arboreal and can be found on montane elevations in Colombia and Ecuador at about 2,600 m (8,530 ft). As you can guess, living at an such an elevation should be too cold for a lizard, but the Flat Andes anole is ok with this. They have been found to have wider preferred and body temperature ranges than expected for anoles and have adapted to take advantage of the limited hours of sun that the area gets (Méndez-Galeano & Calderón-Espinosa, 2017).

These anoles are large rich green to olive lizards with males being slightly larger than females at 85.4mm and 85mm respectively. They have wide banding on their bodies and both males and females have a patch on their tails that have been observed to change from red to blue throughout the day. This patch is larger in males (Beltrán, 2019) and is another sign of sexual dimorphism in this species. Their dewlaps are pink striped.

More on Anolis heterodermus from the pages of Anole Annals here.


Photo: Javier David Quiroga Nova, iNaturalist

#DidYouAnole – Anolis transversalis


Photo: dhfischer, iNaturalist

We talked about a lot of Ecuadorean anoles last year and this week we’re revisiting South America.

Transverse anoles, Anolis transversalis, are arboreal lizards that can be found in the Eastern Amazon in Ecuador, Peru, Colombia, Brazil, Bolivia and Southern Venezuela.

These anoles are dramatically sexually dimorphic, so much so that the males were initially described as another species, A. buckleyi (O’Shaughnessy, 1880). The females have a larger banding pattern, sometimes with spots in between and are also different in colouring. The females of this species have dewlaps that are different from the males as well, being smaller and with large vertical banding. Male Transverse anoles have smaller, faint banding overlaid with spots and a larger bright yellow-green dewlap with a pattern of spots (sometimes) and small faint lateral stripes.


Photo: Fernando Ayala-Varela, iNaturalist

Transversalis anole
Photo: Santiago R Ron, BioWeb

Their differences have been noted in previous post on here as well, the differences in their dewlaps.

The average SVL of male Transverse anoles is 88mm, and females is 86mm. They actively defend their territory from other anoles.

#DidYouAnole – Anolis maculiventris

Some people think that the anoles with brown colouring and patterns are too drab or boring but honestly I appreciate their ability to blend in almost seamlessly to their habitats. The Blotchbelly Anole is another one of those, usually brown, sometimes with light patterning or a tan line down its back.

The males have a unique burnt sienna coloured dewlap, while the females of this species have no dewlap. Blotchbelly anoles appear to be twig anoles and they inhabit lowland forests in Ecuador and Colombia.

The anole gets its name due to the spotting (but not blotches) on its belly. Female Blotchbelly Anoles may be slightly larger than the males with a recorded length of 124-140 mm (Arteaga 2013), and the males at 120-129 mm.

#DidYouAnole? – Anolis lyra

Photo by Andreas Kay, Flickr

Found from northwestern Ecuador to central Colombia, Anolis lyra is a trunk anole that gets its name (Lyre Anole) from the lyre shape on the back of its head.

Photo by Danny Rosero, iNaturalist

As it is sympatric with several other Ecuadorean anoles, it helps that this one has distinct features, like the marking on its head and its very distinct dewlap that is red in males with a dark central spot, and grey-white in females (also with the spot). They have an SVL of about 77mm (males) and 73mm (females).

Photo by Fabio Cianferoni, iNaturalist

The Lyre Anole is near threatened and affected by habitat loss from deforestation.

#DidYouAnole – Anolis gracilipes

Lizard, Norops or Anolis gracilipes? | Andreas Kay | Flickr

Photo by Andreas Kay, Flickr

Hey all!

Here’s a bit of lizard joy for you today!
HUGE shoutout and credit to The Amphibians and Reptiles of Mindo by Arteaga et al. because I can’t find any natural history info about this anole anywhere but in this book. If you can get it, you should! Because of current events they can’t do their normal herping tours (Tropical Herping) and could use the support. Their photography is amazing and you can get calendars, posters and pocket field guides!

NOW ON TO THE ANOLE.

Charm Anole (Anolis gracilipes) · iNaturalist

Photo by Andreas Kay, iNaturalist

Anolis gracilipes, the Charm Anole, certainly is a charming little anole.
It’s been classified as a twig ecomorph, a group of small anoles whose bodies are adapted for narrow surfaces like, you guessed it, twigs. This little lizard can get up to 172-181 mm for males and 169-191 mm for females.

This anole has a brown colouring on its back, with triangular markings and green on its throat, down to its chest.

Photo by Jorge Britos, iNaturalist

Charm anoles can be found in Ecuador and Colombia, where they are common, but may depend on (unfortunately declining) forest canopies.

Photo by Edison Ocaña

Charm anoles are ambush predators and sometimes can be found at ground level.

Evolution 2019: Dewlap Diversity and Population Genetic Structure in an Amazonian Anole

Dewlap variation in A. fuscoauratus. Photos by Ivan Prates.

One of the most well-known and “classic” anole traits is the dewlap, the (usually) colorful flap of skin under the chin that anoles use to display to one another. The dewlap plays a role in numerous anole interactions, including male-male and male-female displays of aggression or courtship. Throughout the Anolis genus, dewlap color and pattern are both quite variable. Dewlap color is thought to be a sign of reproductive isolation, and has been used by researchers to define and recognize species boundaries, although lots of variation within-species exists as well.

Ivan Prates, a postdoctoral fellow at the Smithsonian National Museum of Natural History, has been exploring this variation with the curious case of the Amazonian slender anole, A. fuscoauratus. The species is distributed throughout much of the Amazon, and different populations vary in dewlap color – some are white, some are yellow, and some are pink! Within each population, the dewlaps don’t appear to vary, but different populations have different dewlap colors, seemingly unpredictably. For example, two study populations that are separated by just 60km show different dewlap morphs, with one population having all yellow dewlaps, and the other having all pink. (Note: only males have dewlaps in this species).

This observation led Prates to two questions: first, does the phenotypic variation represent distinct evolutionary lineages? That is to say, are populations with the same colored dewlap more closely related to one another than to populations with different colored dewlaps? And second, what is driving the diversity in dewlap color?

To answer the first question, Prates performed RAD sequencing on a large number of populations throughout the range of A. fuscoauratus. Prates found a fair amount of genetics structure within the species, and identified areas that have experienced high levels of admixture as well. For example, the Atlantic Forest population and northern South American were genetically distinct, but populations within central Amazonia tend to be relatively admixed with one another. Interestingly, he found that this genetic structure of populations was not related to dewlap color at all. Populations with different dewlap colors were present within each of the distinct genetic clades. So each of the dewlap colors did not come from a single source population, and have instead diverged from one another seemingly at random.

So if the genetic structure does not predict the dewlap color phenotype, what does? Previous work on Greater Antillean anoles has shown that dewlap color and pattern vary across habitat types due to differences in light environment and visibility. Denser habitats are thought to lead to more reflective colors and patterns, while more open habitats lead to less reflective dewlaps. Prates therefore used climate data to assess whether environmental variables were correlated with dewlap color. Similar to the genetic results, Prates found no association between climate variables and dewlap color.

What about species interactions? Previous work has also shown that dewlaps can function  as inter-species recognition signals. It is expected that anole species that overlap with one another should have distinct dewlaps, in order to efficiently recognize conspecifics in multi-species communities. Prates addressed this hypothesis by examining the dewlaps of other species of anoles that are sympatric with A. fuscoauratus, and assessing whether dewlap variation might correlate with Anolis community composition. Prates found limited evidence for this hypothesis – for example, in areas where it co-occurs with A. tandai, a blue-dewlapped anole, A. fuscoauratus has a fewer gray-dewlapped populations, which are more similar to blue than the yellow or pink morphs. However, Prates also found that even in sympatry with other yellow-dewlapped species, A. fuscoauratus does not have a reduction in yellow- or white-dewlapped populations.

So what is driving this dewlap diversity? So far, there’s no smoking gun, but a few suggestions come from the data. Prates plans to continue working on this question by digging deeper on both genetic and environmental scales. Stay tuned!

Evolution 2019: Does the Ecomorph Concept Extend to Mainland Draconura Anoles?

Photo credit: Rayna Bell

We all know the story of the anole ecomorphs of the Greater Antilles, but to what extent does this pattern extend to the mainland? Does the mainland perhaps harbor unrecognized ecomorphs not found in the Greater Antilles? The Draconura clade on the mainland is most likely descended from a West Indian ancestor after all. Unfortunately, we currently have a much shallower understanding of the ecology of mainland anoles. Jonathan Huie, an undergraduate student at the University of Washington and former REU student with Dr. Kevin de Queiroz at the Smithsonian’s National Museum of Natural History, presented on his efforts to tackle these questions. Despite some unforeseen technical difficulties, Huie persevered and delivered an excellent talk!

Huie and colleagues utilized the concepts of convergent morphology as a first step to examine this question in the Draconura clade of mainland anoles. They compared various levels of stringency in classification algorithms to examine if mainland Draconura species could be assigned to Greater Antillean ecomorphs or potentially undescribed new ecomorphs. They found that Draconura anoles showed extensive morphological variation, although no species clustered with the more highly derived Greater Antillean ecomorphs such as the twig anoles. Several mainland species could be assigned to existing ecomorphs. However, many species remained unclassified using all classification methods.

Next, Huie discussed evidence for potential unrecognized ecomorphs among unclassified species. Specifically, he proposes a potential “ground” (or “leaf-litter”) associated ecomorph among Draconura anoles which was characterized by relatively longer hindlimbs and narrower toepads. This potential new ecomorph is likely even present in the Greater Antilles. Hispaniola’s own leaf-litter specialist, Anolis barbouri, clusters morphologically with mainland leaf-litter specialists. Huie et al.’s work demonstrates the potentially underappreciated applicability of the ecomorph concept to the diversity of mainland anoles and may have even uncovered a new ecomorph!

Anolis planiceps, a member of the new proposed “ground” ecomorph. Photo credit: Ivan Prates

Evolution 2016: Using Anoles to Understand Shifts in Forests

2016-06-18 19.20.32

Ivan Prates presents his poster at Evolution 2016.

Here at Evolution 2016 there have been a lot of anole talks and posters. In fact, there have even been several that pretend to not actually be about anoles. Ivan Prates presented a poster which he insisted, despite multiple pictures of anoles and the use of anole DNA, was not actually about anoles… Instead, this poster was actually about the historical extent of Brazilian forest cover (or so he says).

In short, Ivan used genomic data to understand historical patterns of dispersion and distribution of South American anoles in order to infer patterns of rainforest expansion and contraction. He suspected that the geological data gave a false interpretation of rainforest patterns in Amazonia and the Atlantic Forest in Brazil, and that anoles could help tell the true story of how the forests have changed over time. By looking at species with strong genetic signals associated with forest shifts he hypothesized that true forest patterns could be elucidated based on the historical demography of these species.

Ivan and coauthors looked at three species of lizards: Anolis punctatusAnolis ortonii, and Polychrus marmoratus. They used the next-generation sequencing technique Genome by Sequencing (GBS) to answer three main questions: (1) Did all 3 species experience range expansions simultaneously? (2) Did populations expand and contract at similar points in time? (3) How did population sizes vary over time? While all three of these questions are about anoles, don’t forget that this poster was actually about the forest.

Ivan found that the Atlantic Forest individuals composed a monophyletic group nested within the Amazonian lineage. This suggests that the anoles of the Atlantic Forest on the coast actually arose from a single colonization event from Amazonia. The land between Amazonia and the Atlantic forest is presently quite arid compared to the rainforest – more like grassland. This presumably forms a barrier to contemporary dispersal, which implies that historical dispersal must have involved greater habitat connectivity. So Ivan’s results support the hypothesis that the forests experienced a drastic historical expansion creating a contiguous habitat that enabled dispersal around 1 million years ago. Interestingly, the timing for the dispersal of all 3 species was approximately the same. A million years ago seems to have been the ideal time to move to the coast for Brazilian anoles.

Ivan and his colleagues also looked at how populations size changed over time. He found that whereas Anolis punctatus experienced a trend of population expansion, Anolis ortonii and Polychrus marmoratus experienced population contractions. It was surprising to the authors that these species did not respond the same – why did only one of the species experience population expansions? They suspected that the expansion of one species might be related to the population contractions of the others, perhaps because of competition. However, their analysis on synchrony of population trends proved otherwise. They found that although trends within species were synchronized across populations, between species the shifts in demography were asynchronous. In other words, when one species expanded or contracted in population size, the others were stable. Ivan concluded that this was support for the idea that these populations were not influencing each other and that instead there was some other factor independently controlling population size fluctuations – perhaps precipitation patterns.

In conclusion, Ivan told me a lot about the demography of anoles during the Quaternary, and a little about the forest. I look forward to hearing more about his “forest” research on these understudied mainland anoles!

Click for a larger version of Ivan's poster!

Click for a larger version of Ivan’s poster!

Powered by WordPress & Theme by Anders Norén