Tag: ecomorph

#DidYouAnole – Anolis allogus


Photo: Alex Alfil, iNaturalist

Hello!

Happy Holidays and Happy Anole Eve!

I took a break for my birthday, and then it was a holiday, then finals, then I had to travel, but now I’m back and it’s almost a holiday again. Before another holiday I did wanna share a short anole post! I’ve also missed doing this and I’ve been thinking about what anole to do since I got to see the anole specimens at the London Natural History Museum.

I picked a festive little Cuban anole, Anolis allogus, also called the Spanish Flag anole or Bueycito anole (after a village where it can be found).

The males of this trunk-ground anole species have an SVL of ~60 mm, while females are about ~49 mm. Its distribution is sporadic but it’s found mostly in the east of Cuba. They follow the typical trunk-ground anole coloration of light or dark grey-brown tones, with striping on their tails, and marbling on their sides. Male Bueycito anoles have pale yellow dewlaps with either a center dot or lateral center stripes of bright red/red-orange. Females have smaller pale yellow dewlaps.


Photo: Alex Alfil, iNaturalist

Spanish flag anoles have been recorded predating on a species of Blindsnake. Check it out here!

I know this was short but I just wanted to say hi really quickly and Happy New Year!

#DidYouAnole – Anolis gundlachi


Photo: macrhybopsis, iNaturalist

I think as far as anole common names go, Yellow-beard is a top 10 name, just barely, but it’s up there.

The Yellow-beard anole, Anolis gundlachi, is endemic to Puerto Rico which is so overflowing with anoles I think it’s a little bit unfair at this point. With an SVL of about 68 mm in males and 45 mm in females, these medium sized anoles live at high elevations in the forest.

Yellow-beard anoles, following that trunk-ground color scheme, are dark olive to brown with darker striping across their backs and a pale colored ventral side. Their dewlaps aren’t quite yellow but are more of a mustard-brown, and their chins have a touch of pale yellow (Yellow-chinned anole doesn’t sound as good as Yellow-beard though). Males often have tail crests!

Photo: Steve Maldonado Silvestrini, iNaturalist

Like many of the anoles we know and love, Yellow-beards may eat other anoles and frogs that can fit in its mouth.

Yellow-beard anoles are often parasitized by malaria, and while more research needs to be done on parasite in this anole, there are existing ones noting tail damage in infected anoles and that males are more often infected, and another noting no significant decrease in overall body condition that you can check out.

#DidYouAnole – Anolis gingivinus


Photo: Kerry Ross, iNaturalist

Hello and welcome to my first post since officially starting as a grad student!
I think I’ve got my schedule down and we can get back to regular weekly anoles. Love that for us!

This week’s anole, Anolis gingivinus is also called the Anguilla Bank anole or Anguilla anole and is endemic to Anguilla and its satellite islands.
The Anguillan anole is reported to adapt well to anthropogenic effects on its habitat (Hailey et al, 2011) and to different niches, although its ecomorph affinities lie closest to being trunk-ground. They also seem to be abundant despite being heavily preyed on by American kestrels.


Photo: John Sullivan, iNaturalist

Male Anguillan anoles have an average SVL of 72mm and females have an average of 53mm. They are usually olive to greyish in colour with bright orange dewlaps, and have bold dorsal and lighter flank stripes. They also occasionally sport some green on their lower halves and males may have darker marbled spotting along their bodies. Anolis gingivinus are insectivorous but like many other anoles will eat smaller lizards.


Photo: Rozilber, iNaturalist

Evolution 2019: Patterns of Morphological and Physiological Variation of Hispaniolan Anoles

We all know that the anoles of the Caribbean partition the habitat based on structural environment and microclimate, leading to patterns of correlated morphology and habitat use within these ecomorphs. While we know a substantial amount about the morphological aspect of the ecomorph concept, many questions remain concerning the patterns of physiological trait evolution across Caribbean anoles and how this relates to habitat use and ecomorphology.

Brooke Bodensteiner, a PhD student in the Muñoz lab at Virginia Tech, is digging into this topic for her doctoral research. In her presentation at Evolution 2019, Brooke told us about two key questions she is attempting to address in her research: (1) Do ecomorphs overlap in physiological trait space or do they neatly differentiate into distinct groups as they do with morphology? and (2) Do thermal traits evolutionarily respond to the same microhabitat predictors?

Brooke measured thermal physiology of anoles in the Dominican Republic, including Anolis cybotes, shown here.

Brooke is investigating these questions in Hispaniolan anoles and has so far sampled 28 of the 41 species found in the Dominican Republic with representatives from all 6 ecomorphs!  The Hispaniolan anoles are particularly good for this research topic since there are representatives of each ecomorph in very diverse habitats islandwide, providing many opportunities for physiological diversification. Building on a large dataset of morphological traits, Brooke collected thermal physiology data from all 28 of these species including critical thermal minimum and maximum and preferred temperature, to try to understand the patterns of physiological diversification and how they are correlated with morphological diversification.

Brooke’s results were fascinating, but more complex and nuanced than expected. Consequently, we will only tell you that her findings are intriguing and will give us a lot to ponder regarding patterns of correlated trait evolution and environmental factors driving physiological evolution. I look forward to seeing the finalized results published soon!

Evolution 2019: Does the Ecomorph Concept Extend to Mainland Draconura Anoles?

Photo credit: Rayna Bell

We all know the story of the anole ecomorphs of the Greater Antilles, but to what extent does this pattern extend to the mainland? Does the mainland perhaps harbor unrecognized ecomorphs not found in the Greater Antilles? The Draconura clade on the mainland is most likely descended from a West Indian ancestor after all. Unfortunately, we currently have a much shallower understanding of the ecology of mainland anoles. Jonathan Huie, an undergraduate student at the University of Washington and former REU student with Dr. Kevin de Queiroz at the Smithsonian’s National Museum of Natural History, presented on his efforts to tackle these questions. Despite some unforeseen technical difficulties, Huie persevered and delivered an excellent talk!

Huie and colleagues utilized the concepts of convergent morphology as a first step to examine this question in the Draconura clade of mainland anoles. They compared various levels of stringency in classification algorithms to examine if mainland Draconura species could be assigned to Greater Antillean ecomorphs or potentially undescribed new ecomorphs. They found that Draconura anoles showed extensive morphological variation, although no species clustered with the more highly derived Greater Antillean ecomorphs such as the twig anoles. Several mainland species could be assigned to existing ecomorphs. However, many species remained unclassified using all classification methods.

Next, Huie discussed evidence for potential unrecognized ecomorphs among unclassified species. Specifically, he proposes a potential “ground” (or “leaf-litter”) associated ecomorph among Draconura anoles which was characterized by relatively longer hindlimbs and narrower toepads. This potential new ecomorph is likely even present in the Greater Antilles. Hispaniola’s own leaf-litter specialist, Anolis barbouri, clusters morphologically with mainland leaf-litter specialists. Huie et al.’s work demonstrates the potentially underappreciated applicability of the ecomorph concept to the diversity of mainland anoles and may have even uncovered a new ecomorph!

Anolis planiceps, a member of the new proposed “ground” ecomorph. Photo credit: Ivan Prates

Anole Annals World Cup: Round One

It’s June. It’s orchid flowering season in Grand Cayman. And with nods to #Anole March Madness and  #MammalMadness it’s the opening round of the 2018 ANOLE WORLD CUP. #ANOLEGOOAAAAALLLL!!!!

Home Team – Anolis conspersus  – against –  Away Team – Anolis sagrei

And in less than 90 seconds it’s all over.


The teams are on the pitch

 


The Away Team

 


The Home Team heads to mid-field

 

 


The Striker takes aim

 


Home Team – 1, Away – nil

 

 

 

 

 

 

 

 

Anoles versus Geckos: The Ultimate Showdown

Two green lizards in Miami, one of each variety.

Two green lizards in Miami, one of each variety.

History is rich with great rivalries; David versus Goliath, Red Sox versus Yankees, Alien versus Predator, but one of the greatest match ups of our time is anole lizards versus gecko lizards. For readers of this blog that are unfamiliar, for which I assume there are few, geckos and anoles are well matched competitors because of their morphological and ecological similarities. Geckos (infraorder Gekkota) are the earliest branch on the squamate tree (sister to all other lizards and snakes) with over 1500 species around the globe, whereas anoles (genus Anolis) appeared roughly 150 million year after the origin of geckos (nested within the Iguania infraorder). The roughly 400 species of anoles can be found primarily in Central and South America. Geckos and anoles both independently evolved very similar hairy adhesive toe pads that help them adhere to and navigate vertical and inverted surfaces. While anoles can likely trace their toe pads to a single origin (and one loss in A. onca), toe pads likely arose and were lost multiple times within Gekkota, although we are still sorting out the exact details (Gamble et al., 2017). Nearly all anoles are arboreal and diurnal, with only a handful of terrestrial or rock dwelling species. Conversely, geckos can be found thriving in arboreal as well as rocky and terrestrial microhabitats day and night.

While anoles tend to get all of the attention from evolutionary ecologists, with decades of amazing research quantifying their habitat use in the Caribbean, geckos are actually older, with more ecological and morphological diversity. As my prior PhD advisor Luke Harmon can surely confirm, I have been interested in knowing how or if insights from Caribbean anole ecomorphology can be applied to geckos. How similar is the evolution and diversification of geckos and anoles? Do geckos partition their habitat along similar dimensions as Caribbean anoles?

In this post, I’d like to share some of my previous work comparing and contrasting gecko and anole diversification and habitat use and then solicit information and opinions from the anole community for an upcoming field trip in which we will be looking at habitat use of sympatric introduced geckos and anoles.

figures

Fig 1. Our reconstruction of gecko (blue) and anole (green) ancestral toe pad performance based on our best fitting weak OU model of trait evolution. Horizontal bars below the X-axis represent the region in which we constrained the origin of toe pads for each clade. Detachment angle (y-axis) represents our measure toe pad performance (the maximum ratio of adhesion and friction a species can generate). The generation of more adhesion for a given amount of friction results in a higher detachment angle. Shaded bands represent our estimated OU optimum value for each clade. Figure modified from Hagey et al. (2017b).

In 2017, we had two great papers come out investigating the diversification of toe pad adhesive performance in geckos and anoles, and the ecomorphology of Queensland geckos. In our diversification paper (Hagey et al., 2017b), we found that while geckos are an older and larger group than anoles, their toe pad performance does not appear to be evolving towards a single evolutionary optimum. Instead, we found that Brownian motion with a trend (or a very weak Ornstein-Uhlenbeck model) best modeled our data, suggesting geckos have been slowly evolving more and more diverse performance capabilities since their origin approximately 200 million years ago (Fig 1). These results assume a single evolutionary origin of Gekkota toe pads, which was supported by our ancestral state reconstructions, but ancestral state reconstructions are far from a perfect way to infer the history of a trait. And so for now, the true history of the gecko toe pad’s origin(s) remains a ‘sticky’ issue. Conversely, adhesive performance in anoles appears to be pinned to a single optima in which anoles quickly reached after their split from their padless sister group (i.e. a strong Ornstein-Uhlenbeck model, Fig 1).

Given these results and the fact that geckos are such a morphologically diverse group, living on multiple continents in many different microhabitats, our results suggest the adhesive performance of geckos may be tracking multiple optima, and when pad-bearing geckos are considered together as a single large group, could produce the general drifting pattern we observed when we assume their ancestor started without little to very poor adhesive capabilities. On the flip side, we can imagine multiple reasons why anoles appear to be limited in their toe pad performance. Perhaps anoles lack the genetic diversity to produce more variable toe pads or they are mechanically or developmentally constrained to a limited area of performance space. Alternatively, since anoles are nearly all arboreal and diurnal in new world tropical environments, it is possible that they are all succeeding in the same adaptive zone and there isn’t the evolutionary pressure or opportunity to evolve more diverse performance capabilities. Closer studies of the adhesive performance capabilities of the few anoles species that have branched out from arboreal microhabitats, such as the rock dwelling aquatic species would be really interesting!

figures2

Fig 2. Our gecko and anole residual limb length calculations suggest geckos (grey triangles) generally have shorter limbs then anoles (black circles). Figure modified from Hagey et al. (2017a).

In our second paper from 2017 (Hagey et al., 2017a), we quantified microhabitat use and limb lengths of geckos across Queensland, Australia and compared these patterns to those known from Caribbean anoles. We found some interesting differences and similarities. Our first result arose as we tried to calculate residual limb lengths and realized that geckos, as a group, have shorter limbs than anoles, which resulted in us calculating residual limb lengths for geckos and anoles separately (Fig 2). We then compared microhabitat use and limb length patterns and found that Strophurus geckos may be similar to grass-bush anoles. Both groups have long limbs for their body lengths and use narrow perches close to the ground. We also found other general similarities such as large bodied canopy dwelling crown-giant anoles and large bodied canopy dwelling Pseudothecadactylus geckos. Unfortunately, we didn’t focus on sympatric Australian geckos and so we couldn’t make direct habitat partitioning comparisons to anoles. We hope to fix that in our next project and would really love to hear from you, the anole community.

Later this spring, I am planning a fieldtrip with John Phillips and Eben Gering, both fellow researchers here at Michigan State University, to Hawai’i (Kaua’i and O’ahu) to investigate habitat partitioning of invasive geckos and anoles, specifically A. carolinensis, A. sagrei, and Phelsuma laticauda. Jonathan Losos one claimed that Phelsuma are honorary anoles! These three species are all diurnal, arboreal, have adhesive toe pads, and are commonly seen in Hawai’i and so we expect them to be competing for perch space. This has been on some of the greatest anole minds since at least 2011 with Jonathan wondering which group would win when the two clades collide in the Pacific. Previous studies of anole ecomorphs across the Greater Antilles and invasive A. sageri in the southeastern US give us a good expectation of how the trunk-crown A. carolinensis and the trunk dwelling A. sagrei should interact and partition their arboreal microhabitat, with A. sagrei pushing A. carolinensis up the trunk. The wild card is P. laticauda. There hasn’t been much microhabitat use work done with Malagasy geckos, and definitely nothing compared to the extensive work with Caribbean anoles. As a result, I don’t know much about exactly what part of the arboreal environment P. laticauda uses in its natural range or how it will fit in with its new pad-bearing brethren in Hawai’i. The best information we have to my knowledge is a study of other arboreal Phelsuma by Luke Harmon in Mauritius (Harmon et al., 2007). He found that while the Phelsuma geckos of Mauritius also partition their arboreal habitat by perch height and somewhat by diameter, they also partition by palm-like or non-palm-like perches. I’m not aware of any anole observations suggesting a palm/non-palm axis of partitioning and so this may be a novel axis that P. laticauda is using in Hawai’i to live in amongst the anoles.

Anoles, geckos, and Hawai’i have come up repeatedly here on Anole Annals

Reproductive Biology of Introduced Green Anoles in Hawaii

JMIH 2016: Anolis vs. Phelsuma in Hawaii

Amazing Green Anole Battle In Hawaii

More On Anoles And Day Geckos In Hawaii

Anoles And Banana Flowers In Hawaii

Fighting Hawaiian Anoles

Brown Anoles on Hawaii and Battle of the Intercontinental Convergents

Many Hawaiians Don’t Like Brown Anoles

SICB 2018: Unraveling Natural and Human-Mediated Founder Events in Anolis carolinensis

Factors Restricting Range Expansion for the Invasive Green Anole Anolis carolinensis on Okinawa Island, Japan

Anole Watercolor Available on Etsy

A Failed Anole Predation Attempt

This Is Not A Madagascan Day Gecko

Battle of the Diurnal, Arboreal Exotics in Florida (the Anole Loses)

Strange perch mate

Green Anole Mayhem

and so we know folks have been thinking about these species and specifically this invasive set of species for a while. We are especially excited to see Amber Wright’s research suggesting P. laticauda was perching above A. carolinensis in her enclosures. We want to know what the anole community has to say. We also don’t want to duplicate or intrude on any projects that are already under way.. If this is something you’ve already started, or started to wonder about… let us know! We would love to collaborate, partitioning interesting questions, if there are already labs working in this arena. We would also be grateful for suggestions, field site recommendations, or relevant publications we may have missed.

 

20-Million-Year-Old Fossils Reveal Ecomorph Diversity in Hispaniola

 

Twenty exquisitely preserved anole fossils in 20 My old Dominican Amber have been reported on in a paper out in Proceedings of the National Academy of Sciences (PNAS) this week.

Previously on AA, I reported that the search was on to find anole fossils in order to piece together the anole family tree. We were extremely fortunate to find in the end 38 amber fossils with anole inclusions, sourced from museums such as the Staatliches Museum für Naturkunde Stuttgart, Germany, American Museum of Natural History, and Naturhistorisches Museum, Basel Switzerland, as well as from generous private collectors.

All of the fossils were exquisite, stunningly-preserved anoles in Dominican Amber. Sometimes just a foot or tail was preserved, sometimes a whole limb or two, or an isolated head, but occasionally a whole lizard was preserved laid out as if it has been pressed into resin just moments before.

Modified from Figure 1 of Sherratt et al. 2015 PNAS.

Modified from Figure 1 of Sherratt et al. 2015 PNAS.

Using micro-CT scanning to peer inside the fossils, we were delighted to find well-preserved skulls and skeletons. We were surprised to find that many of the amber pieces had air-filled pockets representing where the lizard body had once been (but subsequently mostly rotted away), and the scales had left their impression on the amber. This allowed us to view the scales of the limbs and toepads in the greatest of detail.

The forelimb lying atop belly scales of a trunk-ground fossil, specimen M of Sherratt et al. 2015.

The forelimb lying atop belly scales of a trunk-ground fossil, specimen M of Sherratt et al. 2015.

Twenty of these fossils were complete enough, or preserved with the right body parts (limbs with a pelvis, or toepads with countable lamellar scales) to study qualitatively. I micro-CT scanned 100 modern specimens from the Harvard MCZ collection, representing adults and juveniles of all the ecomorphs in Hispaniola. With these data, I build up a dataset of measurements of the limbs, skulls and pelvic girdles that could be used to compare with the fossils. Working fossil by fossil, I used discriminant function analysis to assess the probability that the fossil matched each of the modern ecomorphs.

The fossil twig anole, from Jose Calbeto of Puerto Rico.

The fossil twig anole, from Jose Calbeto of Puerto Rico.

The results were very exciting. We found evidence for four of the six ecomorphs in the amber. Trunk-crown were the most abundant, but there was also one that fell within the twig anoles, two that fell with trunk and two with trunk-ground anoles. Not all the fossils could be assigned to an ecomorph with high probability. Though, my gut feeling is that there is a second twig anole (specimen P) based on the distinct few lamellar scales on its widely-expanded toepads, but sadly it didn’t have enough skeleton and no hind limbs preserved to add to the analysis.

We didn’t find any fossils that resembled crown-giants or grass-bush anoles. Why?

Where Did The Term “Ecomorph” Come From And What Does It Mean?

Famous figure from the Williams (1972) paper in which the term "ecomorph" was introduced.

I just read another paper that uses the term “ecomorph,” this one in reference to populations of insects. We anolologists know that Ernest Williams introduced the term “ecomorph” in his classic 1972 paper (available here), defining an ecomorph as those “species with the same structural habitat/niche, similar in  morphology and behavior, but not necessarily close phyletically.” The terms “ecomorph” and “ecomorphology” are now widely used. Was Williams really the one who  coined the term? And is its current use consistent with the ideas he developed?

Teaching With Anoles, Part 1

As the summer is ending and a new semester is beginning, your thoughts may have returned to teaching. I try to use a diversity of taxonomic groups in my lectures and labs, but of course, I find anoles to be useful examples for many topics in the classroom. In my Evolution course, taught each year to biology majors at Trinity University, I focus one laboratory module on anole evolution to teach my students to conduct phylogenetically-informed comparative analyses. Below, I’ll describe the approach I use in my course, and if you would like to see my materials, or adapt them for your own teaching, I’d be happy to share the lab handouts – just email me at michele.johnson[at]trinity.edu.

Many activities in my lecture and lab focus on creating and interpreting phylogenies, and one of my earliest lab sessions teaches students to use parsimony and similarity-based classification to build phylogenies from mammalian morphological traits.

Powered by WordPress & Theme by Anders Norén