Category Archives: Research Methods

Keeping Up With The Anole Literature

For anole biologists and enthusiasts, there are several ways to keep up with the latest and greatest anole research. These include RSS feeds, social media outlets such as Twitter, and email alerts from websites like Google Scholar (or from Anole Annals! – see the box on the right-hand side of this page). Nonetheless, the amount of literature that already exists on our beloved anoles can sometimes seem overwhelming. Modern search engines have made identifying this work easier than ever before, and we believe that continuing to promote the visibility and accessibility of anole literature will only strengthen our research community. With that in mind, we have created a resource that we hope will be helpful to those of us who spend our time steeped in anole literature.

The resource is a bibliography of Anolis literature, through the end of 2016, which we have compiled via searches of manuscript databases and manual curation. Here are some things you should know:

  • We intend to update the bibliography at the end of each calendar year. Thus papers published in 2017 will appear early in 2018.
  • The bibliography certainly contains errors and omissions. You can help us improve it! The file used to generate the collection can be downloaded, edited, or updated on GitHub. Any suggested edits will be sent to us for approval, and we’re excited for those start coming in.
  • The bibliography is a BibTeX file, a format used by the Latex markup language. Free software like Bibdesk, JabRef, and BibTool can be used to open BibTex files directly.

Lastly, and most importantly:

  • Most major citation software packages (e.g. Endnote, Papers, Mendeley, Zotero) can import BibTeX files. By importing the BibTeX filed used to generate this bibliography into your own citation manager, you can have the full value of this collection at your fingertips. Major benefits of doing so include the ability to easily search and filter within the bibliography, and of course, to instantaneously generate a list of citations from any subset of the full list.

We hope that AA readers will find this resource useful. We also look forward to hearing your suggestions for its improvement! Lastly, we’d like to thank members of the Losos Lab for assisting with the construction and curation of the collection.

This post was co-written by Anthony Geneva and Nick Herrmann.

An Update on Taking Toepad Pictures


I’ve taken more than four hundred toepad pictures using the new macro photography technique I introduced  in an earlier post and I’ve learned a few tricks that I want to share in this update.

First and foremost, I highly recommend this approach. For those of you looking to capture a lot of toepad data, particularly in the field, this kit is way faster and more portable than using a flatbed scanner and the images I’m getting are at least as sharp.


A few tips:

  • Petri dishes work great as a clear platform to place the lizard feet on. I found that the 60 mm diameter dishes were much easier to balance atop the lens (~40 mm in diameter) than the larger dishes I’d originally shown.
  • I cut and taped a scale bar to one edge of the petri dish so I wouldn’t have to worry about juggling a lizard and a tape measure.
  • Make sure you have several petri dishes – they scratch fast – and keep some ethanol and a kimwipe close at hand.


  • The app that lets you remotely trigger your iPhone is absolutely maddening. Do not download it. I’m not even going to relink the name. Instead, I suggest a much more stable alternative: connect your phone to your computer with the USB cable, open QuickTime Player, select File > New Movie Recording and click the down arrow next to the record button. This will give you the option to select your attached iPhone as a recording device. This live-view is far more stable and less frustrating. *Windows and android users I’m afraid I haven’t had an opportunity to sort out a solution for those platforms. If you know of something that works, please include in the comments!

Screen Shot 2017-08-21 at 3.47.58 PM

Unfortunately, through the live view all you can see is whether the lizard is in position. You cannot remotely trigger the shutter this way. That means you’ll need a second pair of hands to help. I found it worked best when my partner was in charge of putting the ID tag in the frame after I’d placed the lizard foot and then pushing the volume button on the side of the phone to trigger the camera shutter.

  • Lighting is really important. I suggested a headlamp in the previous post providing an oblique light source through the diffuser around the lens. I tried using a microscope fiber optic light source but I was really unhappy with the “warmth” of the light. I found that the white-LEDs in my headlamp produced a much more realistic looking image (see above). Also, make sure you don’t have any light sources above/behind the subject. Backlighting confuses the camera’s auto-contrasting and results in dark and sometimes unfocused images.

red dewlap

A New Method for Taking Toepad Pictures in the Field


Getting good pictures of lizard toepads in the field can be tricky. Flatbed scanners are heavy and don’t take well to transit bumps and bruises, and getting a digital camera to focus on the toe, not the glass, requires surgical precision on the manual focus ring. I’ve just found a new solution for an iPhone (or GooglePixel, if that’s how you roll), and I’m eager to share.

Here’s what you need:IMG_0442.JPG

An iPhone 6 or 7 series or a GooglePixel, the Moment Lens mounting case ($29.99) with the Moment Macro Lens ($89.99), a clear surface, a scale bar, your headlamp, and a laptop.

Here’s the setup in action (and, by the way, this particular lizard’s bite force was classified as medium-ouch): IMG_0447.JPG

You’ll notice that when the camera is facing up the iPhone screen is facing down. Obviously this makes it difficult to snap the photo—enter the app WiFiCam. This app enables you to type the phone’s IP address into your web browser and remotely trigger the camera, as long as both devices are on the same wifi. It’s very simple, and the price was right (free!).

And so here’s the whole shebang:

IMG_0452.JPG 2

(Don’t forget to keep a tissue handy for wiping up lizard poop!)

And not to bury the lede, but the results are fantastic (see above).

A few things to note:

  • The white plastic platform around the lens ensures perfect focal distance so getting your lizard as close to that plane as possible is ideal. I tried a square of single pane glass but wasn’t tremendously pleased with the results. The above is taken with a cheap plastic petri dish, which works great but scratches quickly. Another option I’m going to look into is a glass microscope slide. (The biggest drawback to the slide is that it’s smaller than the camera lens platform… meaning that the lizard can actually poop ON YOUR PHONE. And believe me, they will.)
  • The app works fine for controlling the shutter, but it’d be nice to be able to also control other camera settings like focus point and brightness or contrast. There might be other apps out there that do all of that; I just haven’t tried to find them yet. If you’re taking photos of lizard toepads in a place without wifi (as you most likely are), you can use your computer to create a local network and pair the camera to the computer that way.
  • I found that the sidelight was really helpful to get good illumination on the toes. Without the sidelight the camera sometimes adjusts for ambient light behind the foot, making the lamellae hard to see. My headlamp was the perfect size and brightness and worked great.

One last thought: Moment also has a fisheye lens that might do a really nice job of canopy cover photos in the field. That’s on my short list of things to experiment with in the near future!

I’d love to hear your thoughts on how to improve the system in the comments.

If West Indian Weevils Colonized the Mainland 19 Million Years Ago, Were Norops Anoles Along for the Ride?

Exophthalmus scalaris. Credit:

Exophthalmus scalaris. Credit:

In their 2008 review  “Are islands the end of the colonisation road?” Bellemain and Ricklefs (2008) concluded that oceanic islands could be important sources of colonisation of mainland continental areas and cited anoles of the Norops clade as a notable success. There are more than 5 times as many Norops clade species in Central and northern South America as in the West Indies; the 23 extant Caribbean species in the clade are distributed in Cuba and Jamaica with one species in Grand Cayman (Nicholson et al, 2005). Data in Nicholson et al (2005) gave support to the reverse colonisation hypothesis, but did not offer specific dating for the colonisation.

New analyses of 65 species in the Exophthalmus weevil genus complex (Zhang et al 2017) have turned up results that are of significance in understanding the biogeographic history of Caribbean anole dispersal and diversification. Like anoles of the Norops clade, the weevils show reverse colonization (island-to-continent), with diversification on the mainland and diversification within the islands. The data also give some support for overwater dispersal as the factor best explaining ancient between-island distribution.

Zhang et al’s best fit biogeographic model gives an estimate of 19Ma for a jump dispersal of Exophthalmus, most likely from Hispaniola,  which went on to diversify into more than 40 species in Central America.   So – did the anoles and the weevils make their journeys to the mainland around the same time and under similar conditions? Can this weevil study and the techniques it uses to arrive at its conclusions inform anole evolution and dispersal?


Bellemain, E and RE Ricklefs (2008) Are islands the end of the colonisation road? Trends Ecol Evol. 2008 Aug; 23(8):461-8. doi: 0.1016/j.tree.2008.05.001. Epub 2008 Jun 26.   (Correction to citation numbering: Trends Ecol Evol. 2008 Oct; 23(10):536-7).

Nicholson, KE, RE Glor, JJ Kolbe, A Larson, S Blair Hedges, JB Losos (2005) Mainland colonization by island lizards.  Journal of Biogeography 32 (6), 929-938.

Zhang, G, U Basharat, N Matzke, NM Franz (2017) Model selection in statistical historical biogeography of Neotropical insects—The Exophthalmus genus complex (Curculionidae: Entiminae). Molecular Phylogenetics and Evolution, 109, 226-239. DOI: 10.1016/j.ympev.2016.12.039.

Noose Pole Poll

We anolologists (and herpetologists generally) are a devoted bunch, particularly when it comes to our field equipment. It is therefore very troubling to learn that an essential component of our field kit is being discontinued. Perhaps most chilling is the thought losing access to our beloved [1] [2Cabela’s Panfish Poles. A recent series of tweets between AA stalwart James Stroud and Cabela’s customer service revealed noose poles are currently out of stock and may not return:

We have experienced the disappearance and return [1] [2] [3] of these poles before and, despite our best efforts, have not found a good alternative. With this essential tool at risk, I am taking up the effort to convince Cabela’s it is worthwhile to continue producing panfish poles. I would like to present them with the economic argument that many herpetologists use, and will continue to buy, this product.  I created a Twitter poll below and will present the results to Cabela’s customer service in making our case. Please take a moment to share your thoughts using the poll and in the comments. Thanks!

SICB 2017: A Field Based Approach to Study Behavioral Flexibility


Levi Storks explains his project in New Orleans.

Most animal learning studies have been conducted in the lab with the assumption that those findings are representative of behavior in the field. However, assessing behavior in the field increases ecological relevance. In addition, birds and mammals have received much of the attention in cognitive studies. Yet we on Anole Annals know that these lizards can be quite clever.

Levi Storks, a Ph.D. student in Manuel Leal’s lab at Mizzou, set out to address these issues by designing a method for testing behavioral flexibility in brown anoles (Anolis sagrei). Wild lizards in the Bahamas were allowed to feed unrestricted on a maggot placed in the middle of a testing apparatus in order to acclimate lizards to the structure. Storks then used a clear plastic tube to block the direct route to food, requiring lizards to move to either end to gain access. Lizards that successfully completed this task were then tested to see if they could associate unique patterns on the ends of the tube with single openings.

Storks found that a subset of lizards could successfully complete the first detour task, and lizards made fewer errors over the course of solving the detour task. These findings suggest brown anoles can learn and exhibit behavioral flexibility. Stay tuned for more of Levi’s work as he’ll be applying these methods to assess differences in behavioral flexibility between populations that vary in ecology!   


Is There a Crisis in Anolis Taxonomy? Part 2


In a (somewhat) recent blog post entitled “Is there a crisis in Anolis taxonomy?”, Julian Velasco invited discussion on a perceived decline in the number of new anole taxonomists.  While it was a fun look at the dynamics of anole taxonomy over time, I couldn’t help but feel like there is a more pressing taxonomic crisis going on right now, and it affects many of the researchers that frequent this blog.

I fear too many species of Anolis are being described based on questionable evidence.  While this problem is not unique to anoles (a common term for it is “taxonomic inflation”; Isaac et al. 2004), a number of recently described anole species may be the result of overzealous taxonomic splitting.  I will give some examples below and then briefly discuss two lines of evidence that I believe are often used to divide species inappropriately.  Before I do so, it’s worth stating up front that I’ll focus on the work of Dr. Gunther Köhler and colleagues. This shouldn’t be surprising, as Dr. Köhler is the most prolific living describer of anole species.  The following criticisms should not be seen as personal, as Köhler is not unique on any of the points I discuss below.  But with many cryptic species described or resurrected over the past 10-15 years, his work has the largest impact on anole taxonomy and the science that depends on it.

I’ll start with the revision of the Anolis tropidonotus complex published in Mesoamerican Herpetology (Köhler et al. 2016).  Below I provide a quick breakdown of the paper.  I hope that others will contribute their own views on this work in the comments.  The A. tropidonotus group is one that I am well-acquainted with, having spent months of field time collecting individuals across the distribution of the group.  Köhler et al. (2016) raise a subspecies (A. tropidonotus spilorhipis) to species status while describing two new species, A. wilsoni and A. mccraniei.  Unfortunately, the data presented–morphology and DNA–do not appear to strongly support the recognition of any new species level taxa.  I argue that the inference of four species within A. tropidonotus sensu lato should require stronger evidence than that presented.


The authors sequenced 16S mitochondrial DNA for molecular analyses and present a consensus tree from Bayesian analyses of these data. This tree recovers four well-supported and geographically circumscribed mtDNA haplotype clades that correspond with the four new species. A table following the tree reveals the genetic distances between putatively new species topped out at 4.5%. This level of mitochondrial divergence is significantly less than intraspecific variation observed in other anoles (Malhotra & Thorpe 2000; Thorpe & Stenson 2003; Ng & Glor 2011). Moreover, Köhler et al.’s (2016) sampling map reflects sparse sampling of molecular data.

Based on Figure 3, morphology (other than perhaps hemipenes, which I discuss below) does not provide any support for delimitation of those populations characterized by distinct mtDNA haplotypes. The dewlap differences reported are slight and appear to fall within the type of variation observed within and among other populations of species in this group (see photos at the top of this post for an example of two spilorhipis males that came from the same locality; photos courtesy Luke Mahler). Bottom line–we see several populations with mitochondrial haplotypes that cluster together geographically with little to no morphological evidence for divergence.

The phylogenetic and morphological patterns displayed in Köhler et al. (2016) are consistent with patchy sampling of a widespread and continuously distributed species with potentially locally-adapted populations. The authors cite “the high degree of genetic distinctiveness… as evidence for a lack of gene flow, and conclude that these four lineages represent species-level units” (Köhler et al. 2016). This assumption is questionable, as researchers have long known of the pitfalls of using mtDNA to determine gene flow (Avise et al. 1983; Avise et al. 1984; Funk & Omland 2003) and supporting evidence from morphology is lacking. The different hemipenial types represent the strongest evidence for recognizing the lineages mtDNA haplotype groups. Below I will discuss the utility of those traits for species delimitation.

Finally, the authors did not compare their purported new tropidonotus-like species to Anolis wampuensis, a morphologically indistinguishable (McCranie & Kohler 2015) form that is potentially codistributed with the new species A. mccraniei. This should have been done to avoid the possibility that A. wampuensis is conspecific with one of the newly named forms.

Another example of taxonomic inflation in Anolis is from a 2014 monograph in Zootaxa (Köhler et al. 2014). Continue reading Is There a Crisis in Anolis Taxonomy? Part 2

Seeking Input for a Child-Friendly Research Project


In my science lab with my little green friend. This photo will actually be on the back cover of my upcoming book!

As a regular reader of Anole Annals and a subscriber to the Twitter feed, I am honored to have the opportunity to write this post. For those who might remember, I am the elementary school science teacher in Princeton, NJ who made international news (and a mention on Anole Annals) when one of my kindergarten students brought me a juvenile Anolis carolinensis that her mother found in a bundle of salad greens. I am happy to report that “Green Fruit Loop” is still doing well in a spacious terrarium, and I have considered the logistics of returning her to the wild once she’s fully grown. Of course, from what I’ve been reading about her place of origin (south Florida), I’ll have to make sure I find a spot with tall trees, to make sure she has refuge from Anolis sagrei.

Green Fruit Loop

I’ve gotten into the habit of referring to Green Fruit Loop as a “she,” but perhaps an anole specialist could make an accurate determination?

My students continue to be enthralled with our surprise classroom companion, and I have been considering ways to include these children in a scientific investigation on color change We have a second terrarium of adopted Anolis carolinensis (my momentary fame made me a magnet for unwanted pets), and even though I have told my students that anoles don’t assume specific colors to blend in with their backgrounds, this group was almost exclusively green when housed with plants, but since a fungal disease eliminated all vegetation over the winter, these anoles now remain perpetually brown among the rocks and woodwork.


Green Fruit Loop definitely doesn’t look green here!

These observations, which my students have used as evidence that Carolina anoles do, in fact, change color to camouflage (contrary to what their teacher tells them), have prompted me to consider a long-term study, in which several basking platforms will be painted different colors and anoles that use them will be photographed at multiple intervals per day. For example, one platform might be green, one brown, one white, and one black, and a camera on a timer will take photographs of each platform hourly. We could then compare these photographs over time, determine which individuals are exhibiting certain colors on certain platforms, and possibly draw conclusions from what we observe. I recently obtained a grant from the American Society of Plant Biologists to build two large habitats for tropical plants, so this would be an ideal location to house additional groups of anoles for this experiment to proceed.

If anybody has suggestions for the colors and materials that we might use for basking platforms (I am planning on four per habitat, each under its own light), as well as any possible modifications to this experiment for greater scientific merit, please feel free to comment on this post or write to me at Of course, animal welfare is always the highest priority in any of my educational projects, and my group of adopted anoles will never be housed with any field-collected specimens (like Green Fruit Loop) to minimize possible spread of parasites and disease.

Once this experiment gets going, please check in and see what my students are learning on Twitter @markeastburn or at my website Thank you for reading!


Shipping Live Lizards via Cargo from the Dominican Republic

Assuming you can’t get your lizards to fly themselves to your lab, you might want to read this information on how to transport them home. Photo from

After years of transporting live anoles from the Caribbean to my lab in the United States in my checked luggage, this summer in the Dominican Republic, a Delta Airlines agent refused to accept our cooler full of lizards as luggage for our plane. After pursuing every avenue we could think of, it became clear that our only remaining option was to ship the lizards as cargo. We spent several days working out this process, and after making a number of mistakes, we finally arrived at a relatively smooth procedure. To prevent others from having to learn these steps on their own, if such a situation arises for other researchers, we’ve written out the steps that worked for us below. The details provided are for the airport in Santo Domingo, but this general approach may be helpful in other locations as well. (And, if you find yourself in the Dominican Republic in the near future, I’d be happy to give you the contact information for all of the folks listed below.)

Continue reading Shipping Live Lizards via Cargo from the Dominican Republic

BSA of Norops lineatopus

Geometric Morphometric Analysis of the Shoulder of Jamaican Anoles

garmani mating trivers IIxBirds are lovely animals. Our avian friends swoop through the air, defecate on field equipment, and consume lizards. What’s not to like?! Well, their shoulder region, for example. Lost interclavicle, reverted muscle pathways, and so many other anatomical adaptations that appear crucial for the modern avian life style, but that are hard to explain in a gradual-evolutionary context. Reconstructing the structural evolution of the avian shoulder remains a challenging task to students of biomechanics and kinematics. When I left my European homestead to enter the Canadian realm of biological sciences, I was hoping to solve the evolutionary mystery of the avian shoulder, at least in part. Alas, the discovery of anoles sent me on a much more convoluted journey.

Here is the first tale that resulted from that endeavour (Tinius & Russell 2014).

Continue reading Geometric Morphometric Analysis of the Shoulder of Jamaican Anoles

How Many Lamellae Are on this Toepad?

One of the age old questions in anole morphology is at what point do you stop counting lamellae on the toepad?

Without giving any more information on various techniques or methods, I thought it would be interesting to ask the AA community their personal opinions. Below I have attached a flatbed scan of a toepad. Could people please fill out the corresponding poll below, and I will present the results in a follow up post!

alt text

Lamellae numbered 1-51 on the 4th digit of an Anolis lizard hindfoot

Fluorescent Lizard Skeletons Used to Precisely Measure Growth

Several weeks ago, Anole Annals highlighted a recent paper that uncovered the molecular bases of craniofacial dimorphism in the carolinensis clade of Anolis lizards (for full disclosure, I am the lead author of that paper). Hidden deep within that research is a relatively new technique for precisely measuring rates of skeletal growth that may be of interest to the community. I briefly introduced this technique several years ago in a post about methods of skeletal preparation, but with the details of this method now available it is worth highlighting once more.

Double labeled facial skeleton of A. carolinensis. Green label (calcein) and red label (alizarin complexone) separated by 30 days.

Because some images shouldn’t be lost in the supplementary materials. Double labeled facial skeleton of A. carolinensis. Green label (calcein) and red label (alizarin complexone) separated by 30 days.

Growth in body size can often be measured using calipers or a ruler. But in some situations a finer-scale analysis may be necessary, such as when differences in growth rate may be subtle, within the range of error associated with those manual methods. Fluorescent calcium chelators provide the precision needed to measure differences on the order of microns per day. In the recent paper, this technique was used to measure facial elongation in sexually mature green anoles, which was only ~8um per day in males and ~4um per day in females. These compounds are stable, are not highly toxic to animals, are relatively inexpensive, and can be easily used in the field or the lab. They can also be applied to adults or hatchlings with little modification to the protocol as injection volumes are typically 10-20ul depending on size. Ultimately, there is a lot of versatility to the way in which this method can be applied.

Dimorphism in facial growth rates between male and female A. carolinensis. Modified from Sanger et al. 2014.

Dimorphism in facial growth rates between male and female A. carolinensis. Modified from Sanger et al. 2014.

While new to herpetology, this technique was adopted from the biomedical literature on fracture repair where precise spatiotemporal measure of bone deposition is required. The general experimental framework is that pulses of chelators with different fluorescent properties are delivered at distinct intervals, the skeleton prepared, and the distance between the labels recorded from digital photographs. Calcium chelators are available that fluoresce under many of the standard filters used in modern microscopy – including green (calcein), red (alizarin complexone), orange (xylenol orange), and blue (calcein blue and oxytetracycline) – offering great experimental flexibility. Once incorporated into the bone, their signature remains strong for at least 30-45 days, until it is remodeled away as the living skeleton continues to grow and reshape itself. In the recent paper on craniofacial dimorphism, fluorescence in the facial skeleton could be observed following simple removal of the skin because the face has little to no overlying connective tissue. Measuring growth of the vertebrae or limbs is also possible, but may require careful sectioning of the bone using either plastic or paraffin protocols. Ultimately I think that there is a lot of potential with this method that has yet to be explored in the context of organismal biology. I hope that by highlighting this method here more people become aware of its utility and give it a try.

Available Now: A New, Large Phylogeny of Anoles

BEAST estimated phylogeny of anoles. Circles on nodes represent posterior probability, black > 0.95, grey > 0.90, white > 0.70.

BEAST estimated phylogeny of anoles. Circles on nodes represent posterior probability, black > 0.95, grey > 0.90, white > 0.70.

In the course of our recent study on sex chromosome evolution in anoles (Gamble et al. in press) [AA post] we assembled a 216-species mitochondrial DNA phylogeny of anoles, the largest published to date (at least that we know of), yet containing only a little more than half of all recognized species. Although we collected new sequences for some species, our dataset is largely built on the hard work of others who collected and published on sequences from across the genus, such as Jackman et al. 1999, Poe 2004, Nicholson et al. 2005,  Mahler et al. 2010 [AA post], and Castañeda & de Quieroz 2011 [AA post].  Without access to data from these and other studies, we would have had a far less complete and robust tree for our comparative analyses.

There is a big debate going on now regarding what, where and how much data should be shared in association with publishing academically. I personally feel that providing easy access to those data used and generated during a study serves to accelerate the rate and increase the quality of scientific discovery. I am heartened that more and more journals are making data deposition a requirement for publication, although often this means little more than dumping sequence data to GenBank. Sites like Dryad, Figshare, and GitHub now provide open, permanent, and citable access to raw data, figures and, most importantly in my view, research products like alignments, code and analysis logs. In an effort to make our data as accessible and useful as possible we have archived our alignment, MrBayes and BEAST consensus trees as well as as the BEAST posterior distribution on the digital data repository Dryad [doi link]. It is our hope that other anolologists can use and improve upon these data to ask new, interesting questions and to build a larger, more complete view of the evolution of anoles.

The History Of Lizard Noosing

Time honored anole field technique. But since when?

Here at AA, we’ve frequently discussed the art and practice of lizard noosing, such as posts on the best material to use to construct a noose, as well as the variety of suitable poles commercially available. Recently, I was asked a question for which I did not have an answer. To wit, what is the history of lizard noosing? Did our herpetological forebears use nooses? I’m aware that at least some herpetologists in the 70’s were doing so. What about earlier than that? Did Stan Rand noose lizards? Ernest Williams in his younger days? Barbour?

Everyone’s aware that when looking for information, if you can’t find it on Google, it’s not worth knowing. This, however, would seem to be an exception. Wikipedia has no entry on lizard noosing, nor does a Google search on the relevant terms turn up any answers (such a search does, however, turn up a plethora of websites and Youtube videos offering lizard noosing tutorials).  So, I put it to you, AA readers: who can enlighten us on the history of anole noosing?

Anole Skeletal Preparation: Useful And Beautiful

Recently, we had a post on the cool bark anole embryo photographs produced by Catherine May at Arizona State. Catherine has now done this one better by producing a series of photographs, along with explanatory text, detailing the process by which skeletal preparations are made via the old method of clearing-and-staining. As the photo reveals, the resulting products are not only scientifically informative, but quite beautiful. And while on the topic of anole skeletal preparation, check out Thom Sanger’s Halloween-themed post on the same from 2011.

Anolis conspersus, UV Dewlap Photos And Anoles As House Geckos


On a recent trip to Grand Cayman I was interested in the UV reflecting dewlap of Anolis conspersus. The dewlaps of these lizards appear blue to our visual system but are maximally reflective in the ultraviolet. While anoles have 4 cone types (ultraviolet, blue, green and red sensitive), humans have only 3 and cannot see UV light so to understand what these lizards look like in the UV, we have to use specialized camera equipment.  The photo to the right shows what a displaying A. conspersus looks like to our camera system when imaged in the human visual spectrum as commercially available digital cameras also have only three channels corresponding to the three human cone types.  Presumably if we were also able to see in the ultraviolet as many other animals can, our cameras would be designed with a separate channel for ultraviolet.



These images of the lizard in the UV show clearly the regions of the dewlap and that are highly UV reflective and the pattern of UV reflectance in other areas.  One somewhat interesting finding is that while the dewlap scales are highly reflective across the human visual spectrum (which is why they appear white to our eyes) they reflect very little UV light.  The lower photo is a monochromatic image (both the red and blue channels in this camera are sensitive to UV so the raw image appears purple) that makes it a bit easier to see brighter areas as white.  Note how bright the dewlap appears relative to the reflectance standard, when imaged in the human visual spectrum a similar monochromatic image of the dewlap would appear very dark.  I believe this shows the potential value of UV photography when studying Anolis dewlap patterns.  While the UV nature of the A. conspersus dewlap is uniform, it’s likely that other species have patterns visible in the UV we’ve previously missed.  We have also used this UV photography setup in SE Asia to image Draco flying lizards and other species, some of which have patterns that are visible only in the UV band.  The goal of this project is to make a camera system with pixel channels similar to the four cone types found in Anolis lizards and birds to image whole organisms and really “see” the patterns organisms experience with their visual system as they would see them.  As Anolis visual pigments and their associated oil droplets appear to be fairly conserved, this seems to be achievable.

photo (2)

Another surprise (to me) was the large number of A. conspersus on Grand Cayman using lights at night to feed.  I’ve spent many months doing fieldwork in SE Asia and Central America and can’t recall seeing this sort of thing with other diurnal lizard species, but on Grand Cayman it was quite common in A. conspersus.  I observed one A. conspersus male chase away a Hemidactylus that got too close to the light, showing that the anoles at least occasionally displaced the group I typically associate with feeding around lights.  A check of the literature shows this has occasionally been documented on other Caribbean islands, but as far as I can tell no one has published on this in mainland species.  What diurnal lizard species have others observed using lights to feed at night?

ASU Green Anole Genome Reannotation Now Available on Ensembl

Green anole (Anolis carolinensis). Photo courtesy of Karla Moeller.

Green anole (Anolis carolinensis). Photo courtesy of Karla Moeller.

Ensembl Release 71 includes many updates for Anolis carolinensis, including the addition of the Arizona State University (ASU) Anole Genome Project annotation recently published in BMC Genomics (Eckalbar et al., 2013). This release includes an updated Ensembl gene set and aligned RNA-Seq data from a number of tissues, including embryo, lung, liver, heart, dewlap, skeletal muscle, adrenal gland, ovary, and brain, which have been added to the track viewer. These RNA-Seq data from individual tissues and from the ASU reannotation or the “Anole Genome Project” can be viewed just below the Ensembl gene tracks, as in this example.

Advice Needed: GPS Tags For Giant Bronze Geckos?

Here’s a question for AA readers from Nancy Bunbury, from the Seychelles Island Foundation, who is conducting some exciting work on large gecko interactions, ecological roles, and niche separation in the palm forests of the Seychelles:

Giant-bronze-gecko-on-tree“The main species in question is Ailuronyx trachygaster (first field study on this amazing species) and one thing we would love to do is look at movements and territory size (also because we suspect it’s the main pollinator for the coco de mer which has huge conservation and inevitably commercial value). We are looking into GPS tags for the geckos (which are about 150g in weight) but it seems the technology for such a small tag requiring GPS and remote downloading is not yet available. Do you happen to know if such tags have yet been developed and who I might be able to contact for them (I’ve tried the standard larger companies for animal tracking devices)?”

Any suggestions?

Possible Cage For Lizard Field Experiments

IMG_1720On a recent trip to Toronto, eminent bee-man and pollination biologist James Thomson showed me his lab, including a cage used for bee pollination studies.  The cardboard box is a “box of bees” that can be bought commercially and the experiment involves training bees to go to containers with different colors. Despite being fascinated by the research, my mind couldn’t help but wandering to thinking about how useful such a contraption could be to set up in the field for ecological or behavioral anole studies. As you can see, the cage is big enough that it could house a number of anoles at natural densities, and the mesh lets sunlight and rain through. James kindly informed me that the cages can be purchased at Bioquip; the largest they stock is 6′ (h) x 6′ (w) x 12′ (l), but James told me that larger models can be custom-ordered, and that they are very hardy in the field. Someone should try this!

Anolis: The Most Written About Lizard Genus?

In the era of Big Data, we can ask questions that would have been inconceivable just a few years ago.  Consider the types of questions we can ask using Google’s Ngram Viewer, which uses full-text searches of >4% of all books ever printed to characterize relative word or phrase usage over time (this approach was initially described in a 2011 Science paper about “Quantitative analysis of culture using millions of digitized books“).

Among the most important questions one might ask with the Ngram Viewer is “What is the most written-about lizard genus?”  I did some preliminary scouting to assess the relative usage of some of the lizard genera that I guessed would be the most popular. I quickly narrowed my queries to the five taxa – Anolis, Sceloporus, Varanus, Lacerta, and Gekko – that I think give the most interesting graphs for discussion. I excluded other potentially popular genera from my queries for for a few reasons. Iguana is very popular, but I eliminated it because it is often used colloquially to refer to lizards that don’t necessarily belong to the genus Iguana. Eumeces never appears as frequently as the other genera in my searches. Pogona is immensely popular as a pet, but usage of this genus name is still far below the others in my list.

Ngrams_1800_1900Lacerta jumps out to a big early lead and maintains a strong lead throughout the 19th century, thanks to its widespread use in Latin-language literature from the 19th century and countless books about the European fauna (Ngrams Viewer even provides links to the books or articles containing the phrase of interest!).

Ngrams_1900_2000In the early 20th century, Anolis joins the competition as one of the most popular lizard genera, and opens up a sizeable lead by the 1980s that it maintains until the turn of the 20th century.  Although Anolis is briefly surpassed by Varanus in the 2000s, it nudges back into the lead by the end of 2008!



There you have it folks, quantitative proof of the popularity of Anolis!  Have I failed to consider some genera that might be competing with Anolis in the lizard genus popularity contest?