Category Archives: New Research

City Lizards Are Hesitant Feeders

cristatellus.pole

Figure 1. Anolis cristatellus male in survey position.

Foraging behavior reflects a trade-off between the benefits of obtaining vital resources and the potential costs of energy expenditure, missed mating opportunities, and predation. Through time, selection should canalize foraging behaviors that optimize fitness within a given environment, but novel habitats, like urban landscapes, may require behavior to change. For example, human-landscape modification often results in significant reductions in structural complexity of habitat as compared to natural areas, potentially leaving individuals with a greater sense of perceived vulnerability as they venture out to feed. Moreover, these landscapes can alter the diversity and density of predators in ways that might leave prey with a greater sense of perceived predation risk.

In a recent paper in Urban Ecosystems, Chejanovski et al (2017) sought to quantify differences in foraging behavior between anoles from urban areas and those from more natural, forested locations. They utilized two trunk-ground anoles: Anolis sagrei in Florida and A. cristatellus in Puerto Rico. In both urban and natural habitats, they located male lizards in survey posture (Fig 1), which indicates an individual is likely searching for food, and placed a tray with mealworms on the ground at a fixed distance from the perch. They measured each lizard’s latency to feed which was the time it took to the lizard to descend from its perch and capture a mealworm.

Because the availability of complex habitat structure and the proximity of predators might both influence foraging behavior, they experimentally manipulated perch availability for A. sagrei and predator presence for A. cristatellus in both urban and natural habitats. For A. sagrei, they provided half the individuals with two extra perches between the lizard’s original position and the food tray. For A. cristatellus, they manipulated perceived predation risk by placing a static bird model on the opposite side of the feeding tray from half the lizards.

Additionally, they measured several other factors that might influence foraging behavior: the number of available perches within a fixed radius of each lizard – increased habitat complexity might result in lower perceived predation risk; perch height of each individual – those that perch lower to the ground may be more motivated to feed and those that perch higher may be satiated; estimates of body temperature by placing a copper model at the original position of each lizard – body temperature can influence locomotor function and this may have consequences for how easily a lizard can escape predation and play a role in its perceived risk. They also measured the density of conspecifics in the immediate vicinity and noted when conspecific individuals captured mealworms from the feeding tray.

Finally, they measured SVL and mass for a representative sample of each population (urban and natural) in order to calculate body condition. Trade-offs between costs and benefits of foraging decisions can be influenced by satiation of hunger, and body condition, which increases with food consumption, may indicate the extent to which individuals are well-fed.

For both species, lizards from urban areas had a longer latency to feed and demonstrated lower overall response rates to food trays; many individuals never attempted to capture a mealworm in the allotted time (20 minutes). For A. sagrei, habitat (urban vs. natural) best explained feeding latency, but perch height and the presence of conspecifics were also important determinants of feeding latency for A. cristatellus. Individuals perching lower had shorter latency, and latency was shorter when a conspecific attempted to feed from the tray. Neither experimental perch availability nor perceived predation risk (bird model) had any influence on foraging behavior. In both species, individuals from the forest were smaller (SVL) and less massive than those from the city. Body condition was higher for urban A. sagrei but did not differ between natural and urban habitats for A. cristatellus.  

Capture

Differences in foraging behavior for male A. cristatellus between natural and urban habitats.

Because of the reduced availability of perches and structural complexity in urban habitats, urban lizards could have generally higher perceived predation risk and this might explain their reluctance to feed; however, experimental perch availability did not influence foraging behavior for A. sagrei and an artificial predator had no effect on A. cristatellis. The latter may simply reflect that the experimental predator was stationary and a moving predator may have elicited different results.

It is possible that foraging differences reflect food availability in urban vs natural habitats, and thus motivation to forage. Urban anoles had higher body condition and may be generally better fed than those from the forest; however, the authors found no significant correlation between individual body condition and latency to feed. It is also possible that mealworms represent a novel food source for urban anoles, and this resulted in a hesitance to initiate feeding since many animals are reluctant to approach novel objects/ food (neophobia).

In summary, this study demonstrates that differences do exist in foraging behavior for two distantly related species of anoles between urban and forested habitats. The increased latency to feed observed in urban anoles could be due to perceived predation risk, foraging motivation, neophobia, or some combination. What is left to be determined is the extent to which these behavioral differences might be adaptive in their respective habitats.

Of Rats and Reptiles: An Expedition to Redonda

IMG_4456

Anolis nubilus male and female from The Anoles of the Lesser Antilles.

In 1972, James “Skip” Lazell published a monograph on the Anoles of the Lesser Antilles including the species description of Anolis nubilus, an endemic anole restricted to the island of Redonda. His description of the animal and island, like the rest of the monograph, is colorful and evocative:

“The tiny islet is exceedingly steep-to, and rises nearly 1000 feet out of the sea. There is virtually no surrounding bank, and the full swell of the western North Atlantic pounds Redonda’s cliffs. A tiny, nearly vertical gut on the leeward side provides the only access to the top of the islet up the cliffs; great blocks of basalt lie at the foot of this gut and one’s original entrance to Redonda is made by jumping onto these blocks as the boat goes past them. It is about like jumping from a moving elevator onto a card table, except that elevators give more notice of directional reversals… but getting on is just the beginning. …

The top of Redonda is a rolling wold and a favorite place of innumerable nesting sea birds; the gut provides a route for their guano to descend the cliffs, and it dries to a thick powder there. Because of its lee-ward location, a chimney effect is produced in the gut, and the guano dust, mixed with the volcanic sand weathered from the parent rock, tends to rise when disturbed. As one toils up the gut under the tropical sun, one is accompanied by a cloud of this dust, which soon mingles with one’s own sweat to produce a wondrously aromatic and abrasive, though rather gluey, bath. At the top, jumbles of rocks and clumps of prickly pear rise gently to the old ruins, complete with a hedge of bougainvillea and a single tree. This is the home of Anolis nubilus. …

Surely Redonda once supported more vegetation, and presumably Anolis nubilus then had an easier life. The feral goats should be extirpated on this remarkable island, whose only known nonflying vertebrates are species found nowhere else on earth.”

Now, 45 years, 1 week, and 4 days later, I’m headed to Redonda to gather baseline lizard data on exactly such a goat extirpation.

Skip did miss one nonflying vertebrate in his account; Rattus rattus has taken up residence en masse on Redonda. The black rats are so plentiful now that they’ve taken to stalking the lizards on the island in daytime—“tiger rats,” according to Dr. Jenny Daltry, one of the researchers leading the island restoration effort. And so, the government of Antigua and Barbuda, in conjunction with numerous conservation NGOs including Flora and Fauna International, has decided to remove the goats and rats from Redonda in an attempt to restore the island and help its three endemic lizard species to recover.

Redonda is home to not just A. nubilus but also a jet black ground lizard, Ameiva atrata and an as-yet unnamed dwarf gecko, Sphaerodactylus sp. Presumably, A. nubilus would be perched high in vegetation avoiding the roving A. atrata; however, after centuries of goat grazing on Redonda, that vegetation has been reduced to a single Cassuarina tree. So, while that tree is likely swarming with anoles, most of the A. nubilus are spending their time hopping around the boulders of Redonda. Normally this would put them in range of the roving ground lizards, but it sounds as though both lizards should be more worried about those hungry black rats.

Fortunately for all of Redonda’s reptiles, as of a few weeks ago the goats on the island took a one-way ferry ride to new pastures (not a euphemism) and, well, starting soon the rats will be making their way to the great big garbage heap in the sky (definitely a euphemism). My goal is to get to Redonda and gather as much baseline data on the lizards as possible to see whether and how the lizard community changes on a goat-less, rat-free Redonda.

That’s no easy task, though. Here’s a picture of Redonda:

Photo credit: Dr. Jenny Daltry

Photo credit: Dr. Jenny Daltry. I’m reasonably sure that’s the gut there, in the foreground of the image.

Believe it or not, that’s the pleasant side of the island. Here’s the other:

Photo credit: TopTenz.net

Photo credit: TopTenz.net

We decided that hauling a week’s worth of research and camping gear up Lazell’s gut (let alone jumping to that card-table basalt) was out of the question, so I’m going to be arriving by helicopter. As if the rats weren’t enough, Redonda has no source of fresh water so we’ll be carrying in food and drink for the 8 days on the island. No power either, so I’ve been putting together solar kits to try to get enough juice to run a computer and spectrophotometer.

All in all, it’s going to be an adventure! I’ll update Anole Annals when I return, but I’ll also be posting more frequent updates to my personal blog and twitter. I’d love to hear from you, especially if you have any tips for rat-proofing tents (seems more efficient to just bait the other ones, right?).

Citation: Lazell, J.D. 1972. The Anoles (Sauria, Iguanidae) of the Lesser Antilles. Bulletin of the Museum of Comparative Zoology. 143(1).

Anolis sagrei Now in the Southern Hemisphere, First Record for South America

Anolis sagrei has successfully invaded several countries including the United States, Mexico, some Caribbean islands, and even Taiwan and Singapore in Asia. As an invasive species, brown anoles can reach high population densities, expand their range rapidly, and have a negative effect on native species of lizards.

Now, this tree lizard has gone further. A group of Ecuadorian herpetologists recently discovered some individuals of this species in two localities on the Pacific coast of Ecuador. These individuals also represent the first record of this invasive species in South America.

DSC_0428

 A juvenile male individual of Anolis sagrei  found in Ecuador

23903-79180-1-SP

World map showing the distribution of Anolis sagrei. Green spots correspond to native distribution, blue spots non-native distribution, and the red star corresponds to the new records from Ecuador.

Individuals were found in an urban area with a mix of native and introduced species of plants. Although an established population has not been confirmed, this finding certainly represents a potential threat to local species of lizards from Ecuador, home to 38 species of anoles. A note reporting this discovery is in publication process.

Acknowledgments

Thanks to Omar Torres-Carvajal who helped with the post.

Cuban Anolis porcatus introduced to Brazil (perhaps through Florida?)

Several anole species have become established outside of their native ranges as a result of human-mediated transportation, being introduced to Japan, Singapore, Taiwan, Hawaii, the continental U.S., and beyond. Alien anoles can have major impacts on the ecological communities that they invade, for instance leading to local extinction of arthropod taxa and displacing native anole species. It is therefore key to detect and report instances of introduction by these potentially aggressive invaders, as well as to document their geographic spread in colonized regions. In a recent paper, we report on the presence of Anolis porcatus, a species native from Cuba, in coastal southeastern Brazil, using DNA sequence data to support species identification and examine the geographic source of introduction.

Anolis porcatus collected in Brazil, and comparison with the native anole A. punctatus. A, male A. porcatus showing green coloration. B, male A. porcatus showing brown coloration. C, the pink dewlap of male A. porcatus. D, female A. porcatus. E, male A. punctatus, a native anole species. F, the yellow dewlap of male A. punctatus. Picture credits: A–D, Mauro Teixeira Jr.; E, Renato Recoder.

Anolis porcatus collected in Brazil, and comparison with the native anole A. punctatus. A, male A. porcatus showing green coloration. B, male A. porcatus showing brown coloration. C, the pink dewlap of male A. porcatus. D, female A. porcatus. E, male A. punctatus, a native anole species. F, the yellow dewlap of male A. punctatus. Picture credits: A–D, Mauro Teixeira Jr.; E, Renato Recoder.

Perhaps embarrassingly, this study started with Facebook. On August 2015, Ricardo Samelo, an undergraduate Biology student at the Universidade Paulista in Santos, posted a few pictures of an unknown green lizard in the group ‘Herpetologia Brasileira.’ A heated debate about the animal’s identity took place, with people eventually agreeing on Anolis carolinensis. On my way to Brazil to join the Brazilian Congress of Herpetology, I contacted Ricardo (but only after properly hitting the ‘like’ button) and proposed to examine whether the exotic anole was established more broadly in the Baixada Santista region.

To our surprise, local residents knew the lizards well, with some people quite fond of the ‘lagartixas’ due to their pink dewlap displays. People could often tell when the anoles were first noticed in the vicinities – ‘six months’, ‘nine months’, ‘one year ago’ –, suggesting a rather recent presence. Guided by these informal reports, we sampled sites in the municipalities of Santos, São Vicente and Guarujá, where we found dozens of lizards occupying building walls, light posts, fences, debris, trees, shrubs, and lawn in residential yards, abandoned lots, and alongside streets and sewage canals. It was clear that the alien anoles are doing great in human-modified areas; the high density of individuals across multiple sites, as well as the presence of juveniles with various body sizes, seem to suggest a well-established reproductive population.

Sites in the Baixada Santista in southeastern coastal Brazil where introduced A. porcatus were detected. 1, Guarujá. 2, Santos. 3, São Vicente. Green indicates Atlantic Forest cover; gray indicates urban areas; black indicates water bodies.

Sites in the Baixada Santista in southeastern coastal Brazil where introduced A. porcatus were detected. 1, Guarujá. 2, Santos. 3, São Vicente. Green indicates Atlantic Forest cover; gray indicates urban areas; black indicates water bodies.

By reading and bugging experienced anole researchers about the Anolis carolinensis species group, I learned about paraphyly among species, hybridization, and unclear species diagnosis based on external morphology. As a result, my PhD supervisor, Dr. Ana Carnaval, and I decided to recruit Leyla Hernandez, by the time an undergraduate student in the Carnaval Lab at the City University of New York, to help generate DNA sequences to clarify the species identity, and perhaps track the geographic source of introduction in Brazil. To our surprise, a phylogenetic analysis found Brazilian samples to nest within Anolis porcatus, a Cuban species that has also been introduced to Florida and the Dominican Republic. Brazilian A. porcatus clustered with samples from La Habana, Matanzas, and Pinar del Río, which may suggest a western Cuban source of colonization. Nevertheless, Brazilian specimens are also closely related to a sample from Coral Gables in Florida, which may suggest that the Brazilian population originated from lizards that are exotic elsewhere.

Phylogenetic relationships of A. porcatus introduced into Brazil (indicated in red), inferred using MrBayes based on a mitochondrial DNA locus. Purple indicates samples of A. porcatus invasive elsewhere (Florida and the Dominican Republic). Blue indicates native Atlantic Forest anole species. Asterisks indicate posterior probability >0.95. Picture depicts a male A. porcatus collected in São Vicente, Brazil.

Phylogenetic relationships of A. porcatus introduced into Brazil (indicated in red), inferred using MrBayes based on a mitochondrial DNA locus. Purple indicates samples of A. porcatus invasive elsewhere (Florida and the Dominican Republic). Blue indicates native Atlantic Forest anole species. Asterisks indicate posterior probability >0.95. Picture depicts a male A. porcatus collected in São Vicente, Brazil.

The presence of A. porcatus in the Baixada Santista may be related to the country’s largest seaport complex, the Porto de Santos, in this region. Numerous storage lots for intermodal shipping containers were situated near sites where the lizards were detected, and in one instance we found the animals sheltered inside an open container. An exotic green anole (identified as A. carolinensis) was previously found in Salvador in Brazil’s northeast; like Santos, Salvador hosts a major seaport complex, which may indicate that the exotic anoles reached Brazil after being unintentionally transported by ships bringing goods from overseas perhaps twice independently.

It is currently unclear whether A. porcatus will be able to expand into the surrounding coastal Atlantic Rainforest, or into more open natural settings such as shrublands in the Cerrado domain. It is also unknown whether this species will have negative impacts on the local ecological communities. In Brazil, introduced A. porcatus may potentially compete with other diurnal arboreal lizards, such as Enyalius, Polychrus, Urostrophus, and the native Anolis. Five native anoles inhabit the Atlantic Forest (for sure): A. fuscoauratus, A. nasofrontalis, A. ortonii, A. pseudotigrinus, and A. punctatus. While none of them is currently known to occur in sympatry with A. porcatus, the worryingly similar A. punctatus has been reported for a site in Bertioga located only 50 kilometers from the site in Guarujá where we found the exotic anoles.

To properly evaluate the potentially invasive status of A. porcatus in Brazil, we hope to continue assessing the extent of its distribution and potential for future spread, as well as to gather data about whether and how A. porcatus will interact with the local species – especially native Brazilian anoles. This seemingly recent, currently expanding colonization also represents an exciting opportunity for comparisons with other instances of introduction of A. porcatus, as well as the closely-related A. carolinensis, based on ecological and phenotypic data.

Studying such mysterious alien anoles in Brazil was made much more tractable through advice from Jonathan Losos and Richard Glor. Thank you!

To learn more: Prates I., Hernandez L., Samelo R.R., Carnaval, A.C. (2016). Molecular identification and geographic origin of an exotic anole lizard introduced to Brazil, with remarks on its natural history. South American Journal of Herpetology, 11(3): 220-227.

Habitat Disturbance Negatively Affects the Body Condition Index of Anolis antonii

Anolis antonii

Anolis antonii from the agricultural area

Habitat disturbance is considered one of the most important threats to biodiversity. Particularly, anthropogenic disturbance for agricultural practices alters the original structure of Anolis habitats and consequently negatively affects their health and survival. Because the body condition index (BCI) is an effective indicator to assess the health of animals, we hypothesized that the BCI of the Colombian endemic lizard Anolis antonii from an undisturbed habitat (natural area) would be higher than that from the disturbed habitat (agricultural area).

We studied two populations of Anolis antonii from the municipality of Ibague, Tolima, Colombia: (1) a population from an agricultural area cultivated with coffee (Coffea arabica) and plantains (Musa paradisiaca), and (2) a population from a secondary forest, an anthropogenic-free area. We measured the snout-vent length (SVL) and body mass (BM) of adult anoles (males and females)and calculated BCI from the residuals of a linear regression between BM and SVL.

Fig 2. A) Forest habitat and B) Agricultural habitat of Anolis antonii (Ibagué – Colombia)

We found that the BCI of the lizard population from the agricultural area was significantly lower than that of the secondary forest population. Consequently, A. antonii from the secondary forest, with a higher BCI, might have a greater ability to compete for available resources and survive than those from the cultivated area. Thus, this work shows that anthropogenic disturbance negatively decreases the body conditions of A. antonii lizards, which might represent a forthcoming threat for its conservation, especially due to the current habitat deterioration of this species by agriculture activities.

Read the paper:

Gallego-Carmona, C.A., Castro-Arango, J.A. and Bernal-Bautista, M.H., 2016. Effect of Habitat Disturbance on the Body Condition Index of the Colombian Endemic Lizard Anolis antonii (Squamata: Dactyloidae). South American Journal of Herpetology 11(3):183-187.

Adult Male Density Influences Juvenile Microhabitat Use in Brown Anoles

Photographs of the housing conditions used in the experiment. (a) One of the experimental enclosures (with an artificial tree) surrounded by blinds on all sides (note, the front blind was pulled back to reveal the tree and cage). (b) Close-up of the available horizontal perches. (c) Juvenile Anolis sagrei with its identification number on the lateral body surface for visual identification.

Fig 1. Photographs of the housing conditions used in the experiment. (a) One of the experimental enclosures (with an artificial tree) surrounded by blinds on all sides (note, the front blind was pulled back to reveal the tree and cage). (b) Close-up of the available horizontal perches. (c) Juvenile Anolis sagrei with its identification number on the lateral body surface for visual identification.

For many animals, optimal habitats vary across age classes, and individuals shift habitat use as they age. While many studies have documented such age-specific habitat use, most are observational and do not identify the causal factors. In addition, we know that competition between species has been an important driver of habitat use in Anolis lizards. However, less is known about the role of competition on habitat use within species of anoles, especially between age classes.

Dan Warner and I previously found that adults use higher and thicker perches than juveniles at our field site in northeastern Florida (Delaney and Warner 2016). We hypothesized that this variation was a result of adults forcing juveniles to suboptimal habitat. Thus, we altered the density of adult males in mesh enclosures (Fig. 1) in the lab and monitored changes in juvenile microhabitat choice.

Continue reading Adult Male Density Influences Juvenile Microhabitat Use in Brown Anoles

Anoles Are Habitat Specialists at the Individual Level Too

Anoles are probably best known for the ecomorph story: the presence of specialized species adapted to the same sets of structural microhabitats on different islands. Anoles in the Greater Antilles have contributed hugely to our understanding of both the evolutionary history and the contemporary ecology of communities of specialists.

While they are better known for specialization of species in communities, anoles have also contributed to our understanding of within-species ecological diversity. Around the same time that Ernest Williams was developing the ecomorph concept, Roughgarden (1972) used data from Lesser Antillean anoles to introduce a new framework for investigating the extent to which a population’s niche width (i.e. the diversity of habitats it uses or prey it eats) is determined by variation among individuals versus variation within individuals. For example, individuals in a population of Anolis roquet differ in the size of prey they consume, mainly because larger individuals can catch and ingest larger prey items. While Roughgarden’s early work set the stage for an explosion of studies of individual specialization over the past decade or two (reviewed in Araújo et al. 2011), surprisingly little work has been done to revisit individual specialization within species of anoles. In particular, we don’t know enough about how much individuals specialize in important aspects of microhabitat that differentiate ecomorphs, especially perch height and perch diameter.

"Gar" lived alone on my desk, so I don’t know if he was an individual specialist or not

“Gar” lived alone on my desk, so I don’t know if he was an individual specialist or not

Anole Annals contributors Ambika Kamath and Jonathan Losos have helped to fill this gap with a study just published online in Evolution. Ambika and her team spent a summer observing microhabitat use of a population of brown anoles (Anolis sagrei) in a forested park in Gainesville FL. They marked lizards with colored beads, and repeatedly recorded individual lizards’ perch height and diameter, compiling a total of over 1000 observations of 80 anoles. They grouped perch heights and perch diameters into classes, then compared the distribution used by each individual to the distribution used by the whole population (or to the distribution available to that individual) using a proportional similarity index. The mean value of this index gives a measure of the overall degree of individual specialization in a population, as lower overlap values tell us that individuals are specializing on a subset of the available perches.
Continue reading Anoles Are Habitat Specialists at the Individual Level Too

SICB 2017: Are Anoles Less Stable When Running Without Using Claws?

Photo courtesy of Catalina Mantilla

Photo courtesy of Catalina Mantilla

This post was written by Brittney Ivanov, research technician in Michele Johnson’s lab at Trinity University.

Catalina Mantilla, a Ph.D. candidate at Florida International University working with Tonia Hsieh of Temple University, is interested in how anoles use their toepads and claws when they run. For most animals, movement on vertical perches such as tree trunks or buildings usually requires specialized morphologies to adhere to these substrates. While many species have evolved adaptations for moving through complex arboreal habits (e.g., prehensile tails or feet, sticky pads, spines), anoles evolved enlarged toepads and distinct claws, presumably to allow for better adhesion. The morphologies of these specialized structures can greatly impact performance; for example, greater toepad area is associated with greater clinging ability. Catalina wanted to better understand how toepads and claws work together to enhance running performance.

Catalina collected 17 males from four Anolis species (A. carolinensis, A. sagrei, A. cristatellus, and A. distichus). Each male was tested in four different running courses to test performance at difference inclines and on different substrates. Two of the courses were positioned at a 45° incline and two at a flat (0°) incline. Plexiglass covered one course at each incline to allow the use of toepads and eliminate the use of claws. Nylon mesh covered the other course at each incline to test the use of both toepads and claws. Performance was evaluated using mean relative sprint speed, relative stride length, and stride frequency.

Catalina found, unexpectedly, that when the lizards ran on the level plexiglass, they ran slower, took shorter strides, and increased their stride frequency compared to when they ran on the inclines. These results suggest that anoles are less stable when they can’t use their claws! in addition, these data support the idea that the combination of toepads and claws is important for their running performance. In the future, Catalina hopes to increase the number of species in this study to determine the effect of ecomorph on claw and toepad interactions during running, and to evaluate limb function changes when running across different inclines.

SICB 2017: How Anoles Climb Trees: Ecomorph Differences in Neuromuscular Function

Kathleen Foster presents her work to a packed room at SICB.

Kathleen Foster presents her work to a packed room at SICB.

Regular readers of AA will be familiar with the differences in microhabitat use that define the Anolis ecomorphs, but do species with such distinct structural habitats move differently on their specialized perches? In other words, does muscle function differ between the ecomorphs? In the very last session at this year’s SICB, Kathleen Foster, currently a postdoctoral researcher at the University of Ottawa studying the biomechanics of fish locomotion (come back to anoles, Kathleen!), presented a portion of her graduate work in Tim Higham’s lab at the University of California, Riverside, to address this question. She used high speed video to film five species of anoles running on broad and narrow perches at two angled inclines, combined with electromyography to record fore- and hindlimb muscle activity during running.

Photo courtesy of Kathleen Foster.

Photo courtesy of Kathleen Foster.

Kathleen found that all five species had greater motor unit recruitment on steeper inclines than on horizontal perches, and that muscle activity is shorter but begins more abruptly on inclines. Further, recruitment of the gastrocnemius (a “calf” muscle) was greater on broad perches, because the way lizards sit on narrow perches limits the function of this muscle. If you’ve seen how anoles position their feet on both sides of narrow perches, it’s easy to understand how this posture prevents effective propulsion by ankle extension. Kathleen also found several intriguing differences that distinguish trunk-ground species’ muscle function from trunk-crown and crown-giant species. The activity of the caudofemoralis (a limb retractor muscle in the hindlimb) changes more in trunk-ground species as a function of incline, and trunk-ground species use the biceps and gastrocnemius more in the early stance phase of propulsion than trunk-crown species.

Overall, these data help us understand how specialization in neuromuscular function can allow different anole species to successfully move through their varying habitats, and offer insight into how behavioral differences depend on the muscles that underlie them.

SICB 2017: Impacts of Urbanization on Morphology, Thermal Preference, and Parasitism

Chris Thawley at a crossroads.

Chris Thawley at a crossroads.

Urban environments are widespread and expanding across much of the earth, and this urbanization likely affects the flora and fauna in its path. Anoles are no exception and are frequently observed perching on anthropogenic structures. Thus, Chris Thawley, a post-doc in Jason Kolbe’s lab at the University of Rhode Island, and colleagues wondered how the abiotic and biotic changes in urban areas influence anole traits.

Thawley compared populations in urban and natural habitats of two species that we’re quite familiar with on Anole Annals – the Brown Anole (Anolis sagrei) and the Puerto Rican Crested Anole (Anolis cristatellus). Thawley found that A. sagrei prefers warmer temperatures than A. cristatellus, but that urban anoles do not differ in thermal preference than natural anoles for either species. Alternatively, urban male A. cristatellus and both sexes of urban A. sagrei were larger than their natural counterparts. As for parasites, A. sagrei had a higher parasite prevalence than A. cristatellus, but urban anoles did not differ from natural anoles in either species in parasite prevalence. However, for the A. sagrei that were parasitized, urban A. sagrei had higher parasite loads than natural A. sagrei.

These findings show that urbanization can influence anole morphology and parasite ecology. Thawley has just begun this work, and I look forward to seeing his future research on anole adaptation to urban environments!

SICB 2017: A Field Based Approach to Study Behavioral Flexibility

storks-poster-sicb-2017

Levi Storks explains his project in New Orleans.

Most animal learning studies have been conducted in the lab with the assumption that those findings are representative of behavior in the field. However, assessing behavior in the field increases ecological relevance. In addition, birds and mammals have received much of the attention in cognitive studies. Yet we on Anole Annals know that these lizards can be quite clever.

Levi Storks, a Ph.D. student in Manuel Leal’s lab at Mizzou, set out to address these issues by designing a method for testing behavioral flexibility in brown anoles (Anolis sagrei). Wild lizards in the Bahamas were allowed to feed unrestricted on a maggot placed in the middle of a testing apparatus in order to acclimate lizards to the structure. Storks then used a clear plastic tube to block the direct route to food, requiring lizards to move to either end to gain access. Lizards that successfully completed this task were then tested to see if they could associate unique patterns on the ends of the tube with single openings.

Storks found that a subset of lizards could successfully complete the first detour task, and lizards made fewer errors over the course of solving the detour task. These findings suggest brown anoles can learn and exhibit behavioral flexibility. Stay tuned for more of Levi’s work as he’ll be applying these methods to assess differences in behavioral flexibility between populations that vary in ecology!   

 

SICB 2017: Muscle Physiology and Social Behavior

Above: Faith Deckard presenting her research on how muscle physiology may explain variation in social behavior among Caribbean anoles.

Above: Faith Deckard presenting her research on how muscle physiology may explain variation in social behavior among Caribbean anoles.

Marathon runners and elite sprinters, like Usain Bolt, have dramatic differences in their muscle physiology that allow them to specialize in their respective track-and-field events. Whereas sprinters have lots of muscle fibers that produce high force but fatigue quickly, marathon runners have lots of muscle fibers that produce less force but allow much longer activity because of their reliance on aerobic respiration. Might this be true for our beloved Caribbean anoles, too? Faith Deckard of Michele Johnson’s lab at Trinity University tried to answer that very question. She studied six species of anoles in the Dominican Republic to test whether anoles that have higher rates of dewlap extension and extend their dewlap for a longer duration have dewlap muscles with a higher proportion of slow-twitch muscle fibers that can be used for endurance. Surprisingly there was no significant correlation between the two behavioral traits and the proportion of slow-twitch fibers! However, this scrutinizing attendee feels pretty strongly that there is a relationship that is just yet to be teased apart statistically. The raw data Faith presented looked very convincing to me, so we’ll see what the future holds for this question. Faith’s results are a very interesting clue to the still-elusive mechanisms that underlie anole behavioral diversity.

SICB 2017: Leptin as a Mediator of Trade-offs

Above: Andrew Wang presenting his research on how leptin may be a mechanism underlying life-history trade-offs in green anoles.

Above: Andrew Wang presenting his research on how leptin may be a mechanism underlying life-history trade-offs in green anoles.

All of the gumbo, Po boys, and beignets consumed by attendees of SICB 2017 have to go somewhere after consumption. Much of the energy contained in those delicious foods is used for very important maintenance functions in your body: metabolism, cell repair and replacement, and your immune system. What’s left over after maintenance costs can then be divided amongst other tasks, such as reproduction, movement, and wide variety of other tasks. Unlike humans, anoles do not have unlimited access to gigantic portions of gumbo, so their energetic investments require much harder decisions. Once energy from a cricket, for example, has been put into the immune system, it can no longer be used for making eggs or patrolling a territory a little bit longer. Andrew Wang of Jerry Husak’s lab at the University of St. Thomas was interested in what mechanisms are involved with anoles making these investment “decisions.” He did this by forcing allocation of resources to an energetically expensive trait (endurance running) by exercise training lizards to see what would happen to everything else that they might invest in.

Previous work showed that exercise training and diet restriction results in dramatic trade-offs with reproduction and the immune system. He suspected that what might explain this suppression was the hormone leptin, which is made by fat cells (yours make it, too). Since bigger fat cells means more leptin in the body, leptin can be thought of as a signal to the brain and body of how much resources are available for investment. Indeed, without sufficient leptin, reproduction grinds to a halt from the brain downward. Much like elite athletes, Andrew’s marathon lizards have little to no fat stores in their body, thus suggesting a role for leptin. To address this question, he supplemented half of the lizards with leptin (the rest got only saline as a control) to see if he could “rescue” immune function and reproduction. Interestingly, he found that leptin did rescue his measure of immunity, but it did not rescue reproduction. He attributes this latter finding to either (1) a lack of energetic resources to produce eggs even if there is a leptin signal or (2) the stress of the leptin injections over-rode the leptin signal in the brain where reproduction is controlled. His results suggest some very complex interactions in physiological pathways that can result in the trade-offs observed in many animal species.

Leptin is best known as a satiety hormone, but it has important roles as a signal to the body of adequate energy stores. Image from wiki.brown.edu.

SICB 2017: Sex-Specific Predictors of Performance

Green anole image from reptilesmagazine.com.

What does it take be a good sprinter? How about a marathon runner? One might think that the traits responsible for such performance traits would be the same in males and females. If you are a green anole, that just isn’t true. Annie Cespedes, working in Simon Lailvaux’s lab at the University of New Orleans, explored the multivariate predictors of seven performance traits (sprint speed, bite force, cling force, exertion, endurance, jump power, and climbing power) in male and female green anoles. Annie explained how animals in nature rely on lots of different performance traits in their daily lives, and the large difference in body size and shape between male and female anoles might mean that the two sexes use different means to be successful in life. To add to this complexity, some individuals are just better overall at ALL performance traits than others (imagine a couch potato versus a very fit athlete), and one must account for this to understand what shapes anole performance.

Multivariate statistics allowed Annie to show that males and females do indeed differ in performance, but only in clinging ability, sprint speed, bite force, and jump power. Even more interesting, the suites of morphlogical traits that explained performance ability differed substantially between the sexes. For example, small females with large leg muscles were better sprinters and jumpers than females who are smaller and are better biters and endurance runners. What is especially important about Annie’s research is her approach. When considering how animals evolve, one must do so by simultaneously looking at a multitude of traits that might impact their survival and reproduction. By knowing how morphology predicts performance, we can begin to better understand how evolution will shape that morphology when selection acts on those performance traits.

SICB 2017: Homeward Bound: An Incredible Anole Journey

(c) OwenMartin12, some rights reserved (CC BY-NC)

(c) OwenMartin12, some rights reserved (CC BY-NC)

The abilities of certain animals to navigate and home on a specific location over long distances are some of the most fascinating behaviors that scientists study. However, studying homing behavior, especially experimentally, can be a major challenge, as many animals home over long distances (thousands of miles), in difficult-to-study environments (underwater, high in the sky), on in ways that are technically difficult or very expensive to monitor. As we know, anoles can be relatively simple (and cheap!) to study. So what if anoles could be developed as a model system for studying homing behavior?

On the surface, the presence of homing behavior in anoles might seem unlikely, as many species are highly territorial and may not travel long distances during their lifetimes. David Steinberg and Manuel Leal showed that, while seeming unlikely at first glance, at least one species of anole, Anolis gundlachi, does indeed show strong homing behavior.

Anolis gundlachi, the yellow-chinned anole, is a denizen of cool, closed forests in Puerto Rico. Because these lizards stick close to their small territories, they likely have little specific knowledge of their surrounding habitats, potentially making navigation through unfamiliar areas difficult. Steinberg displaced anoles 40 and 80 meters from their home territories and then monitored their territories to see how many anoles returned. Surprisingly, 40-60% of females returned and 80% of males returned, even when taken 80 meters from their homes. Simulations of these movements show that it is highly unlikely anoles would be able to return to their territories in this way via random searching. Steinberg then tested whether two common mechanisms that support homing, use of magnet fields and visual detection of polarized light, were responsible for homing, but found that the homing abilities of these anoles do not depend on either of these two senses.

Finally, Steinberg tracked anoles through the Puerto Rican forest using radio transmitters, and found that anoles returned to their home territories with a high degree of accuracy, in some cases making a beeline home within 24 hours! These results suggest that homing ability may be more common in anoles than has previously been considered, and that strong selection for territory ownership in anoles may support spatial memory and navigation in these animals.

SICB 2017: Green Anoles, Brown Bodies: Are Brown Lizards “Losers”?

brittneyAnimals frequently compete over resources, and the outcomes of these aggressive interactions depend on a number of factors – one of which is the animals’ previous social experiences. If an animal wins a fight, it may be more likely to win subsequent fights (a “winner effect”), and if it loses, it may be more likely to lose subsequent fights (a “loser effect”).  Garcia et al. (2014, Animal Behavior) previously showed that green anoles exhibit loser effects, but not winner effects. Brittney Ivanov, research technician in Michele Johnson’s lab at Trinity University, wondered whether, since body color in green anoles is associated with social dominance, were color changes in green anoles associated with these loser effects? Could she cause a green anole to be brown if it was forced to lose social contests?

Brittney conducted an experiment using 16 male green anoles. First, in three consecutive days, these focal males interacted with a larger “trainer” male in the trainer male’s home cage for one hour. On the fourth day, the focal males interacted with a size-matched novel male in a cage that was new to both lizards. If the focal males were effectively trained to lose in the first three trials, she predicted that they would lose this fourth trial.

In the series of size-matched trials, 7 of the 16 contests resulted in a clear winner and loser, and 6 of those 7 focal males lost that trial. Further, focal males were less aggressive in the size-matched trial than they were in their previous training trials. These data support the presence of a loser effect in green anoles. Consistent with her previous work, Brittney also found that lizards that were more often green prior to the trials were more likely to win their trials, showing that body color is important in social contests.

brittneycolorgraph2This experiment revealed new findings about loser effects and body color. Focal males who lost their size-matched trial were more likely to be brown in the days after the trials – and not only that, they were more likely to become brown after the trials (so, these weren’t just loser males who had been brown all along).

All together, Brittney’s results show that body color can provide important information about a green anole’s fighting ability or motivation, or its recent social experience, and that dynamic body color influences multiple stages of social interaction in this species.

SICB 2017: Urban Anoles Like It Hot

Postdoctoral scientist, Dr. Shane Campbell-Staton, presents his work on CTmax shifts in Anolis cristatellus at SICB 2017.

Postdoctoral scientist, Dr. Shane Campbell-Staton, presents his work on CTmax shifts in Anolis cristatellus at SICB 2017.

Greetings from New Orleans, where SICB 2017 is well underway! Kicking off the conference was Dr. Shane Campbell-Staton, currently a postdoctoral researcher at the University of Illinois, Urbana-Champaign. Shane presented some work he has been doing with Kristin Winchell, a graduate student in Liam Revell’s lab at the University of Massachusetts, Boston. Kristin’s work focuses on how the crested anole, Anolis cristatellus, adjusts its biology to life in urban areas. In previous work, Kristin documented adaptive shifts in limb and toepad morphology in these anoles in urban areas, a shift she correlated with the broader perches urban anoles use.

In this neat follow-up study, Shane and Kristin have documented how perch temperatures in urban Puerto Rican habitats are higher than in natural environments on the island. In response, urban Anolis cristatellus have a higher heat tolerance. Results from a common garden experiment indicate that the urban shifts in heat tolerance are primarily due to plasticity. At the moment, Shane is performing genomic analyses to search for signatures of selection on heat tolerance.

 

Tails of the City: Caudal Autotomy of Anolis cristatellus in Urban and Natural Environments

Lead author, Kirsten Tyler, reports on her recent Journal of Herpetology paper with K. Winchell and L. Revell:

Urbanization creates drastic changes to habitats leading to differences in microclimate, perch characteristics and distribution, and ecological communities (competitors, prey, and predators) when compared to natural (forest) habitats. Studies have found increased rates of mortality of many urban species due to generalist urban-tolerant predators such as raccoons, feral cats, and domestic animals (Ditchkoff 2006). Anolis lizards are able to voluntarily drop their tails (“autotomize”) when challenged by a predator, enabling their escape in many instances. The maimed lizards are able to regenerate their lost tails, though the replacement tail is a rod of cartilage and not the original bony vertebrae. The regenerated tail portions are often a different color and texture, and the lack of vertebrae / cartilage rod are clearly visible in X-rays.

We hypothesized that autotomy rates would be more similar between urban areas in different municipalities than to natural areas in the same municipality due to similar predator regimes in urban sites across the island. We compared the frequency and pattern (number of caudal vertebrae remaining) of caudal autotomy of A. cristatellus between urban and natural areas in Puerto Rico.

X-rays of our samples with an intact tail (A) and an autotomized tail (B).

X-rays of our samples with an intact tail (A) and an autotomized tail (B).

We sampled A. cristatellus from paired natural and urban sites in four Puerto Rican municipalities: San Juan, Mayagüez, Ponce, and Arecibo. The natural sites were high quality natural forests and the urban sites were high-density residential areas. Urban sites were dominated by asphalt and other impervious surfaces, had sparse tree cover, and a large fraction of potential perches were manmade surfaces such as walls and fences. We scored 967 X-rays from these eight sites for caudal autotomy and counted the number of remaining tail vertebrae. We tested for an effect of urbanization on caudal autotomy by fitting a logistic regression model with municipality (San Juan, Mayagüez, Ponce, Arecibo) and site type (urban, natural), and their interactions, as model factors, and body size as a covariate.

Our data shows that lizards found in urban sites have a larger probability of having autotomized tails.

Our data shows that lizards found in urban sites have a larger probability of having autotomized tails.

Interestingly, we found higher rates of autotomy in all urban populations compared to nearby natural areas. Differences in autotomy might be explained by differences in predator density and efficiency (Bateman 2011). For example, inefficient predators (those that more often than not fail to capture their prey) tend to leave behind more lizards with broken and regenerated tails (Schoener 1979). In addition, a greater abundance of predators could result in more predation attempts. Unfortunately, we did not collect data on predator abundances or community composition, so we cannot distinguish between these (non-mutually exclusive) explanations. Higher rates of autotomy in urban areas could thus reflect any of a variety of factors, including (but not restricted to) inefficient predators in urban areas, a shortage of refuges offering protection from predators, or an increase in predator density.

For lizards with autotomized tails, we found no significant difference in caudal vertebrae number between urban and natural sites.

For lizards with autotomized tails, we found no significant difference in caudal vertebrae number between urban and natural sites.

Lastly, we did not find that lizards with autotomized tails in urban areas had lost more (or less) of their original tail to caudal autotomy. Since regenerated tails cannot be autotomized past the original break point (i.e. cartilage cannot autotomize), this suggests that lizards in urban areas are no more likely to be subject to multiple unsuccessful predation attempts (resulting in caudal autotomy) than lizards in natural forest. Future investigation quantifying predation attempts or predator community composition in urban and forest habitats could help us better understand the source of this intriguing pattern.

 

Read the paper:

R. Kirsten TylerKristin M. Winchell, and Liam J. Revell (2016) Tails of the City: Caudal Autotomy in the Tropical Lizard, Anolis cristatellus, in Urban and Natural Areas of Puerto Rico. Journal of Herpetology: September 2016, Vol. 50, No. 3, pp. 435-441.

 

References:

BATEMAN, P. W., AND P. A. FLEMING. 2011. Frequency of tail loss reflects variation in predation levels, predator efficiency, and the behaviour of three populations of brown anoles. Biological Journal of the Linnean Society 103:648–656.

DITCHKOFF, S. T. 2006. Animal behavior in urban ecosystems: modifica- tions due to human-induced stress. Urban Ecosystems 9:5–12.

SCHOENER, T. W. 1979. Inferring the properties of predation and other injury-producing agents from injury frequencies. Ecology 60:1110–1115.

The Genetic Consequences of Adaptive Dewlap Divergence

Figure 1 from Ng et al. 2016 showing the transect sampling spanning Anolis distichus populations differing in dewlap color (T1-4) as well as control transects (C1-4). Pie charts show dewlap color variation (top row), mitochondrial clade membership (middle row) and nuclear genetic cluster assignments (bottom row).

Figure 1 from Ng et al. 2016 showing the transect sampling spanning Anolis distichus populations differing in dewlap color (T1-4) as well as control transects (C1-4). Pie charts show dewlap color variation (top row), mitochondrial clade membership (middle row) and nuclear genetic cluster assignments (bottom row).

We sure love dewlaps here on Anole Annals! These flashy signals are incredibly diverse in size, color and pattern, and always make for a gorgeous image (e.g. 1, 2). Yet, we still have much to learn about why there is such a diversity of dewlaps and, furthermore, what are the consequences of such diversity? Previous work by Leal and Fleishman (2002, 2004) suggests that some of this dewlap diversity is due to adaptation for more efficient communication in different habitats. In a recent paper, we sought to identify whether the consequence of such adaptive trait divergence was speciation, or whether locally adapted dewlaps are maintained despite gene flow.

Anolis distichus shows remarkable geographic variation in dewlap color that predictably varies with habitat in a manner consistent with adaptation (Ng et al. 2013). This variation in color across Hispaniola gave us a great opportunity to conduct replicated analyses to identify whether adaptive differences in dewlap color consistently leads to the same genetic outcome.

We sampled populations in the Dominican Republic along five transects that transitioned from populations with orange dewlaps to those with cream or yellow dewlaps. For a comparison, we also sampled four ‘control’ transects where all populations shared a similar dewlap color. If dewlap differences are associated with speciation, we expected to see genetic differentiation between populations at either ends of the transect as this would suggest some level of reproductive isolation. Otherwise, transects showing no evidence of genetic structure would suggest that individuals are freely mating regardless of dewlap color.

Looking at the genetic structure of both nuclear and mitochondrial DNA along each transect, we found that geographic variation in dewlap color is associated with both speciation and gene flow. Three transects showed distinct genetic structure consistent with speciation, with one in particular only showing evidence of hybrids at one site which was a mere 0.89-1.55km away from other sampled sites. On the other hand, the other two transects did not look much different to the control transects, suggesting ongoing gene flow regardless of phenotypic differences.

Considering all transects together, I think there are two main take-aways from our results. First, finding evidence of gene flow across a sharp geographic shift in dewlap color must mean that strong selection is maintaining geographic variation in dewlap color; perhaps due to adaptation to different habitat types. Second, it appears that dewlap divergence does not necessarily lead to speciation. More work, however, is needed along these lines to understand whether the dewlaps we are characterizing as different are actually different from an anole’s perspective or in particular light environments (e.g. 1).

Hundreds of Genes Help to Resolve Green Anole Evolutionary History in North America

Anolis carolinensis from North Carolina. Photo from Carolina Nature.

One of the most well-known species of anole lizard is Anolis carolinensis, AKA the green anole, which is the only anole native to the continental United States. As a classic model for ecology and behavior, this lizard was the first species of reptile to have a complete genome sequence. Interestingly, only after it became a genomic model, numerous studies (Tollis et al. 2012, Campbell-Staton et al. 2012, Tollis & Boissinot 2014) sought to understand how genetic variation is structured across the geographic range of A. carolinensis,  and to infer historical migration patterns and demographic events to explain the current distribution of green anoles. However, these studies still left many questions unanswered, mostly due to the fact that they were limited in terms of numbers of genetic markers. Now, we have published a new paper in Ecology and Evolution that used a targeted enrichment method to capture more than 500 sequence markers and provide a clearer picture of A. carolinensis historical biogeography.

What we knew about Anolis carolinensis phylogeography

Collecting green anoles for phylogeographic study has been a real hoot, taking us all over the country. Anolis carolinensis ranges across subtropical North America, and consists of five geographically structured genetic clusters supported by both mitochondrial (mtDNA; see Tollis et al. 2012 and Campbell-Staton et al. 2012) and nuclear (nDNA) markers (see Tollis et al. 2012, Tollis & Boissinot 2014). Three of the clusters are found in Florida : one whose distribution primarily hugs the Northwestern coast of the peninsula, another along the Eastern coast of the peninsula, and a third relegated to South Florida. The continental mainland, while making up most of the area of green anole range, harbors only two clusters: one occupying North Carolina and South Carolina, and another from Georgia, west of the Appalachian Mountains and across the Gulf Coastal Plain into Texas.

One confusing result from earlier studies of A. carolinensis molecular phylogeography was the placement of the most basal lineage in NW Florida (Tollis et al. 2012, Campbell-Staton et al. 2012). This didn’t make sense biogeographically, since it is believed that the species dispersed to the continental mainland from western Cuba (Buth et al. 1980, Glor et al. 2005). However, a subsequent nDNA study (Tollis & Boissinot 2014) produced a multi-locus species tree to show that southern Florida harbors the most ancient lineage of A. carolinensis. This discovery of mito-nuclear discordance provided a more satisfying biogeographical explanation that only needs to invoke overwater dispersal to South Florida from Cuba.

(A) Phylogenetic relationships of the major green anole lineages inferred from the ND2 mtDNA locus. (B) Phylogenetic relationships of the major green anole lineages using multi-locus species tree approach (1 mtDNA and 3 nDNA markers).

Different genetic datasets tell different stories about Anolis carolinensis evolutionary history. (A) Phylogenetic relationships of the major green anole lineages inferred from the ND2 mtDNA locus. (B) Phylogenetic relationships of the major green anole lineages using multi-locus species tree approach (1 mtDNA and 3 nDNA markers). Adapted from Manthey et al. 2016.

From there, things remained unresolved even with nDNA. For instance, while the split between South Florida and the rest of the species received full statistical support in Tollis & Boissinot (2014), the relationships between the other clades were less supported, making it difficult to determine if the A. carolinensis mainland clades arose from separate Floridian sources.

The data used in Manthey et al. 2016

To our knowledge, this is the first Anolis phylogeography study to use targeted enrichment, so I thought I would elaborate on the nature of this kind of dataset. Anchored hybrid enrichment (AHE) relies on probes designed from conserved genomic regions ascertained from a panel of vertebrate genomes – including A. carolinensis – which are flanked by non-conserved regions (the level of conservation in determined by PhastCons scores from the UCSC Genome Browser). DNA samples are pooled, and a set containing thousands of probes is used to enrich libraries that get sequenced on an Illumina platform and assembled into contigs, producing hundreds of homologous loci.

Here’s the breakdown of what we ended up with in the new study: our sample contained 42 individual anoles from 26 localities across eight states, and we were able to obtain 487-512 loci per individual, with an average contig length of 629bp, and an average of 17 SNPs per locus including an average of six parsimony-informative SNPS per locus. Roughly speaking, that’s one parsimony-informative SNP every 100bp for 500 loci, so about 3,000 parsimony-informative SNPS  = not bad! For what it’s worth, the 10 nDNA A. carolinensis markers obtained by more traditional PCR/Sanger sequencing contained about one SNP every 100bp as well (see Tollis et al. 2012 and Tollis & Boissinot 2014). Therefore, AHE produced hundreds more informative loci at a fraction of the cost.

New insights into Anolis carolinensis phylogeography using targeted loci

Using different statistical clustering methods (DAPC and Structure), Manthey et al. supports the same five  genetic clusters as previously described. However, there is now a fully resolved species tree – arrived at using multiple methods. First, the South Florida clade is the most ancient lineage of green anoles, likely splitting off from the rest of the species during the Miocene or Pliocene. However, there is now 100% support for a sister-group relationship between the mainland clades, massively simplifying the story of A. carolinensis. Green anoles likely remained in Florida until the Pleistocene, dispersing northward and onto the mainland where two lineages evolved independently- one along the Atlantic coast in the Carolinas, and another dispersing across the Gulf Coastal Plain.

(A) Map showing geographic localities of 42 green anoles selected for targeted enrichment. (B) Results of species tree analyses. Colored symbols correspond to the five geographic and genetic clusters. Adapted from Manthey et al. (2016).

(A) Map showing geographic localities of 42 green anoles selected for targeted enrichment. (B) Results of species tree analyses. Colored symbols correspond to the five geographic and genetic clusters. Adapted from Manthey et al. (2016).

We also found that despite the best resolution to date for the A. carolinensis species tree, incomplete lineage sorting is rampant across these loci, highlighting the need for these kinds of datasets for phylogeographic studies at this evolutionary distance. For instance, the only clade with any gene trees supporting exclusive ancestry was South Florida: meaning on a given gene tree, pre-defined “clades” are often paraphyletic. The reason the species trees agreed in their topologies is due to fact that they probabilistically invoke the coalescent process, which incorporates incomplete lineage sorting. Previous studies, using ≤10 loci, simply lacked enough statistical power to do this confidently.

More work to be done

As with most scientific endeavors, the new study resolves some outstanding questions but also begs new questions. For instance, although we were able to infer gene flow between the Gulf-Atlantic and NW Florida clades, the degree of allele sharing between populations is still not clear. There seems to be some admixture between the Gulf-Atlantic and Carolinas clades south of the Appalachian Mountains in Georgia, suggesting elevational gradients provide a more effective barrier to gene flow in this species than riverine barriers. Also, the divergence times of the green anole clades are still based only on molecular clock models and could benefit greatly from informative fossils calibrations.