SICB 2018: Anoles and Undergrads: A New Kind of Science Lab

This post was written by Brittney Ivanov, research technician in the Johnson Lab.

AbbyBeatty

PhD candidate, Abby Beatty, from Auburn University presented a poster entitled Integrating research into the classroom: causal effects of IGF1 and IGF2 on growth in the brown anole. The poster focused on an enhanced method of teaching science, particularly labs. The program, called C.U.R.E (Course-based Undergraduate Research Experience), allows students to experience teaching labs in a way that is more authentic and typical of the research experiences of graduate students. In most science labs, students are provided with different protocols and methods as well as a predetermined set of goals and results that explains how the experiment should turn out. The teaching method Abby proposed gives students the opportunity to learn from their failed attempts, before receiving the correct answers.

The course lasted for 2 semesters, consisted of undergraduate and graduate students, and began with a pre-survey that assessed student’s current knowledge as well as their ability in certain cognitive skills: analyzing, applying, creativity, evaluating, understanding, and memory. The students then chose a topic (related to Abby’s dissertation work) to be the focus of the labs. From this, they were able to develop methods and design their labs.

Specifically, the first semester class cloned and expressed IGF1 and IGF2 (insulin-like growth factors) using a bacterial vector. Similarly, the second semester class cloned IGFBP2. Abby then used these proteins to optimize methods for studying the growth rate of eggs and hatchling brown anoles. Hatchlings were monitored for 10 weeks following an injection with either IGF1, IGF2, or vehicle (NaCl + 15% Gelatin). Two trials were performed on the hatchlings and one on the eggs. In the first hatchling trial, IGF1 and IGF2 treatments had significantly higher death rates than control groups, but there was no association with body size. In the second trial, which used refined and updated methods, there was no significant effect on survival or body size, when compared to control groups. Finally, egg treatment did not correlate with survival or body size.

As the class completed each step in this process, they reviewed their work and if their methods were unsuccessful, discussed a better approach. Following completion of the course, the students received a post-survey assessing the same skills and knowledge as the pre-survey.

Abby found the class gained significantly in these skills, particularly receiving higher survey scores in the areas of creativity and understanding. She also found that the average score on the knowledge assessment was higher in the classes post-assessment survey than in the pre-assessment, indicating that the students may be gaining from this method of teaching. Control surveys from a class taught using a typical lab curriculum are not available, but there are plans to include this over the course of coming school semester.

These data, while still preliminary, highlight the benefit of implementing this kind of teaching strategy. When students are able to explore the process of asking and answering questions they generally become more engaged in their work and better prepared for more authentic research experiences.

Leave a Reply

Your email address will not be published. Required fields are marked *

Optionally add an image (JPEG only)