Evolution 2017: Genetics of Ecologically Divergent Anoles

Anolis distichus is well-known in the anole world for the high degree of ecomorphological variation within the species, especially in dewlap color. In fact, there are 18 described subspecies! While there is some gene flow between various subspecies and populations, the phenotypic differences are maintained, which suggests strong selection. But the fine-scale genetic structure underlying these traits is not well understood. Anthony Geneva and colleagues decided to explore the genomic basis of adaptive divergence in a well-described hybrid zone between two A. distichus subspecies. The first, A. d. ignigularus, has a white dewlap, and occupies a dry forest habitat while the second, A. d. ravitergum, has a red dewlap and inhabits a wetter habitat. The two subspecies occur along a transect from dry to wet, and they hybridize in a narrow contact zone in the middle. These two subspecies provide a great system to explore the link between adaptive and genetic divergence.

IMG_1928

Anolis distichus. Photo by Rich Glor

Geneva sequenced individuals using RNASeq across an environmental transect from wet to dry, including allopatric and sympatric populations of both species. He examined levels of divergence and introgression to explore which genomic loci might be the basis for the ecological adaptive divergence between these two species. He found a suite of candidate genes that differ between the two subspecies, as well as several that show signs of introgression between the two. Interestingly, several of the divergent genes are involved in two traits that likely are impacted the environment – insulin signaling, which may relate to metabolic differences between hot and cool climates, and vision, which may relate to differences in light availability and signal efficiency. Most of the introgressed genes, on the other hand, relate to conserved pathways, suggesting that these genes play similar roles in both subspecies.

Adpative divergence in anoles has been a topic of interest for a long time, and Geneva’s study provides and a valuable insight to the genetic basis of this interesting phenomenon.

Leave a Reply

Your email address will not be published. Required fields are marked *

Optionally add an image (JPEG only)