SICB 2016: Can Geckos Run Fast When It’s Wet Outside?

Austin Garner, an undergraduate at the University of Akron.

Austin Garner, an undergraduate at the University of Akron.

Anoles, geckos, and some species of skinks have adhesive toepads that allow them to cling to substrates. This adhesive ability is remarkable – anoles, for example, can hang from a glass pane using just one toe. Gecko adhesion is particularly well studied, but most research has focused on how these animals cling to dry surfaces. In their natural habitats, however, geckos often have to contend with wet surfaces.

Austin Garner, an undergraduate at the University of Akron working with Peter Niewiarowski, wanted to know whether geckos could move effectively on wet substrates. He measured sprinting performance in two species of gecko, Gekko gecko and Chondrodactylus bibronii, across a 2-meter vertical racetrack that was misted with water. Average sprint velocity on wet substrates did not differ significantly from the average sprint velocity on dry substrates, indicating that geckos can sprint equally fast on slippery surfaces. The substrate material, however, influenced how often geckos slipped. Geckos slipped more on glass substrates compared to acrylic substrates. Austin hypothesized that this is likely due to the surface chemistry of glass. Glass is a hydrophilic substrate, meaning that water is attracted to its surface more so than the surface of acrylic. Interestingly, the frequency of slipping differed among species. Chondrodactylus bibronii, a species of gecko from an arid habitat, slipped more often than G. gecko, a gecko found in the tropics. Although C. bibronii slipped more on wet substrates, this species did not suffer a decrease in average sprint velocity on wet substrates. This suggests that C. bibronii is somehow compensating for the slipping observed on wet substrates, but Austin is unsure of the mechanism behind this compensation. Overall, his study suggests that geckos can travel on wet substrates up to 2-meter without a reduction in their adhesive ability, and that at least one species of gecko can compensate for any loss of traction caused by the presence of water.

About Martha Muñoz

Martha is a postdoctoral researcher in Sheila Patek's laboratory at Duke University. She received her Ph.D. at Harvard University, where she studyied the evolutionary ecology and thermal physiology of anoles, focusing on the cybotoid anoles from the Dominican Republic. Martha serves as Conference Editor for the Anole Annals. Website:

Leave a Reply

Your email address will not be published. Required fields are marked *

Optionally add an image (JPEG only)